Вопрос задан 08.06.2023 в 08:36. Предмет Геометрия. Спрашивает Галкина Милана.

Медіани АК і ВМ в трикутника АВС перпендикулярні. Знайдіть медіану СD цього трикутника, якщо

АВ=12см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лисунов Артём.

Ответ:За властивостями медіан у трикутнику, медіана поділяє сторону на дві рівні частини. Тобто, якщо $AK=KB$, то $CK$ є медіаною.

Оскільки $AK$ і $BM$ є медіанами, то вони ділять сторони $BC$ та $AC$ навпіл. Отже, $AK=KC=BM$.

Застосуємо теорему Піфагора для трикутників $ABK$ та $CBM$:

$$AK^2 = AB^2 - BK^2 = 12^2 - \left(\frac{1}{2} BC\right)^2$$

$$BM^2 = BC^2 - CM^2 = 12^2 - \left(\frac{1}{2} AC\right)^2$$

Оскільки $AK=BM$, то можемо прирівняти обидві формули:

$$12^2 - \left(\frac{1}{2} BC\right)^2 = 12^2 - \left(\frac{1}{2} AC\right)^2$$

Спростимо це рівняння:

$$\left(\frac{1}{2} AC\right)^2 - \left(\frac{1}{2} BC\right)^2 = 0$$

$$(AC+BC)(AC-BC) = 0$$

Оскільки сторона $AC$ не може бути рівною стороні $BC$ (інакше, медіани $AK$ та $BM$ збігаються, тобто, точки $K$ та $M$ співпадають), то $AC+BC\neq 0$.

Отже, $AC-BC=0$ та $AC=BC$. Це означає, що $CD$ є медіаною трикутника $ABC$ та розділяє сторону $AB$ на дві рівні частини. Тому $CD=\frac{1}{2}AB=6$ см.

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Медіана трикутника є відрізком, який з'єднує вершину трикутника з серединою протилежного йому ребра. У даному випадку, медіана СD з'єднує вершину С з серединою ребра AB.

Оскільки медіани АК і ВМ перпендикулярні, то вони діляться відрізком АВ на дві рівні частини. Тому AM = MB = 6 см.

Оскільки медіана ділить сторону на відрізки у співвідношенні 2:1, то CM = 2 * AM = 2 * 6 см = 12 см.

Отже, медіана СD трикутника АВС дорівнює 12 см.

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос