Вопрос задан 21.06.2018 в 19:52. Предмет Геометрия. Спрашивает Кожевникова Мария.

Площадь параллелограмма равна 96 дм периметр 44 дм в квадрате а расстояние между большими сторонами

8 дм в квадрате вычислить расстояние между меньшими сторонами параллелограмма ПОМОГИТЕ
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Солнцева Виктория.

1. Построим перпендикуляр СН, чтобы показать расстояние между параллельными большими сторонами ВС и AD, и перпендикуляр DO, чтобы показать расстояние между меньшими сторонами АВ и CD. Найдем AD, зная площадь параллелограмма и его высоту СН:
Sabcd= AD*CH, отсюда
AD=S/CH=96/8=12 дм
2. Зная периметр, найдем АВ:
Pabcd=2AD+2AB, отсюда 
AB=(P-2AD)/2=(44-24)/2= 10 дм
3. В прямоугольном треугольнике CHD найдем по теореме Пифагора DH:
DH = √DC²- CH²= √10² - 8² =√36 = 6 дм
4. Треугольники AOD и DНС подобны по первому признаку подобия: два угла одного треугольника соответственно равны двум углам другого. В нашем случае:<AOD=<DHC=90°, <BCD=<CDH как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей CD. Но <BCD=<OAD, поэтому <OAD=<CDH.
5. Для подобных треугольников можно записать:
AD/CD=OD/DH, отсюда
OD=AD*DH/CD=12*6/10=7.2 дм


0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос