
Вопрос задан 05.05.2021 в 18:15.
Предмет Геометрия.
Спрашивает Белышева Екатерина.
Расстояние от точки до прямой Найдите расстояние от точки М до прямой ABОчень прошу подробное
решениемне нужны задачи:1,2,5,6


Ответы на вопрос

Отвечает Кучишин Софія.
Длина перпендикуляра, проведённого из данной точки к данной прямой, называется расстоянием от этой точки к этой прямой.
#1.
Этим расстоянием будет являться отрезок BM, его длину нужно найти. Этот отрезок представляет собой катет прямоугольного треугольника, лежащий напротив угла в 30°. По свойству прямоугольного треугольника такой катет будет равен половине гипотенузы, в данном случае – AM. AM = 26, следовательно BM = 13.
Ответ: 13.
#2. Сумма острых углов прямоугольного треугольника по его свойству должна быть равна 90°, тогда угол M + угол A = 90°, а так как угол M = 60°, то угол A = 30°. Нам требуется найти BM. BM – это катет, лежащий напротив угла в 30°, значит BM = 1/2 × AM, а так как AM = 30, то BM = 15.
Ответ: 15.
#5. Я прикрепил рисунок к заданию. Нам нужно будет найти расстояние от точки M до AB, то есть перпендикуляр MF. Сумма острых углов прямоугольного треугольника равна 90°, тогда угол B + угол A = 90°. Угол B = 60° по условию, значит угол A = 30°. Тогда MF = 1/2 AM, так как MF – катет, лежащий напротив угла в 30. AM по условию равно 8, значит MF = 4.
Ответ: 4.
#6. Рисунок к заданию прикрепил. Так как требуется найти расстояние от точки M до отрезка AB, то нужно найти перпендикуляр ME. Это задание можно решить двумя способами:
Способ #1. ME – перпендикуляр, проведённый из вершины треугольника ABM, значит ME – высота. В треугольнике AMB два угла равны, значит треугольник равнобедренный. А в равнобедренном треугольнике высота, проведённая к основанию, является медианой, то есть ME – медиана. Есть свойство прямоугольного треугольника, которое гласит, что медиана, проведённая из вершины прямого угла прямоугольного треугольника, равна половине гипотенузы, тогда ME = 1/2 × AB, а раз AB = 15 по условию, то ME = 7,5.
Способ #2. В прямоугольном треугольнике сумма острых углов равна 90°, то есть угол A + угол B = 90°, а раз они равны, то угол A = углу B = 45°, тогда треугольник AMB – равнобедренный. ME – перпендикуляр, а значит треугольники AME и BME – прямоугольные. В прямоугольном треугольнике сумма острых углов равна 90°, то есть угол BME + угол B = 90° и угол A + угол AME = 90°. Углы A и B = 45°, как мы уже убедились, значит углы BME и AME = 45°. Тогда треугольники AME и BME – равнобедренные, а значит в этих треугольниках боковые стороны равны. Тогда ME = AE и ME = BE. Треугольник AMB – равнобедренный, ME – высота, а значит ME – медиана, тогда AE = BE. Эти стороны образуют AB, которая равна 15, значит AE = BE = 7,5. А так как ME равна этим сторонам, то ME = 7,5.
Ответ: 7,5.
#1.
Этим расстоянием будет являться отрезок BM, его длину нужно найти. Этот отрезок представляет собой катет прямоугольного треугольника, лежащий напротив угла в 30°. По свойству прямоугольного треугольника такой катет будет равен половине гипотенузы, в данном случае – AM. AM = 26, следовательно BM = 13.
Ответ: 13.
#2. Сумма острых углов прямоугольного треугольника по его свойству должна быть равна 90°, тогда угол M + угол A = 90°, а так как угол M = 60°, то угол A = 30°. Нам требуется найти BM. BM – это катет, лежащий напротив угла в 30°, значит BM = 1/2 × AM, а так как AM = 30, то BM = 15.
Ответ: 15.
#5. Я прикрепил рисунок к заданию. Нам нужно будет найти расстояние от точки M до AB, то есть перпендикуляр MF. Сумма острых углов прямоугольного треугольника равна 90°, тогда угол B + угол A = 90°. Угол B = 60° по условию, значит угол A = 30°. Тогда MF = 1/2 AM, так как MF – катет, лежащий напротив угла в 30. AM по условию равно 8, значит MF = 4.
Ответ: 4.
#6. Рисунок к заданию прикрепил. Так как требуется найти расстояние от точки M до отрезка AB, то нужно найти перпендикуляр ME. Это задание можно решить двумя способами:
Способ #1. ME – перпендикуляр, проведённый из вершины треугольника ABM, значит ME – высота. В треугольнике AMB два угла равны, значит треугольник равнобедренный. А в равнобедренном треугольнике высота, проведённая к основанию, является медианой, то есть ME – медиана. Есть свойство прямоугольного треугольника, которое гласит, что медиана, проведённая из вершины прямого угла прямоугольного треугольника, равна половине гипотенузы, тогда ME = 1/2 × AB, а раз AB = 15 по условию, то ME = 7,5.
Способ #2. В прямоугольном треугольнике сумма острых углов равна 90°, то есть угол A + угол B = 90°, а раз они равны, то угол A = углу B = 45°, тогда треугольник AMB – равнобедренный. ME – перпендикуляр, а значит треугольники AME и BME – прямоугольные. В прямоугольном треугольнике сумма острых углов равна 90°, то есть угол BME + угол B = 90° и угол A + угол AME = 90°. Углы A и B = 45°, как мы уже убедились, значит углы BME и AME = 45°. Тогда треугольники AME и BME – равнобедренные, а значит в этих треугольниках боковые стороны равны. Тогда ME = AE и ME = BE. Треугольник AMB – равнобедренный, ME – высота, а значит ME – медиана, тогда AE = BE. Эти стороны образуют AB, которая равна 15, значит AE = BE = 7,5. А так как ME равна этим сторонам, то ME = 7,5.
Ответ: 7,5.




Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili