
У рівнобічну трапецію, верхня основа якої дорівнює 1, вписано коло радіуса 1. Знайдіть площу
трапеції.

Ответы на вопрос




Позначимо трапецію ABCD, де AB - верхня основа, CD - нижня основа, а BC = AD - бічна сторона.
Оскільки коло вписане в трапецію, то його центр співпадає з точкою перетину діагоналей трапеції. Позначимо цю точку O.
Позначимо точки дотику кола до сторін трапеції: E - точка дотику кола з AB, F - точка дотику кола з CD, G - точка дотику кола з BC, H - точка дотику кола з AD.
За властивостями вписаного кута та кутів, що доповнюються, отримаємо, що кути трикутників AOG та DOF прямі. Оскільки AO = DO = радіус кола, то трикутники AOG та DOF є рівнобедреними.
Позначимо точку перетину EF та GH - точкою I.
За властивостями вписаного кута та кутів, що доповнюються, отримаємо, що кути трикутників EIG та FHI прямі. Оскільки EI = FI = радіус кола, то трикутники EIG та FHI є рівнобедреними.
Також за властивостями вписаного кута та кутів, що доповнюються, отримаємо, що кути трикутників EIB та FID прямі. Оскільки EI = FI = радіус кола, то трикутники EIB та FID є рівнобедреними.
Таким чином, трапеція ABCD розбивається на чотири рівнобедрені трикутники та квадрат зі стороною EI = FI = радіус кола.
Позначимо довжину сторони квадрата через r.
Оскільки трапеція ABCD є рівнобічною, то довжина бічної сторони дорівнює (1 - r)/2.
Площа трапеції ABCD дорівнює сумі площ рівнобедрених трикутників та площі квадрата:
S = 2 * S(AOG) + 2 * S(EIG


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili