
В правильной четырехугольной пирамиде сторона основания равна 5√2 , боковое ребро равно 13 см
Найдите объем пирамиды

Ответы на вопрос

Решение на фото!
_______________________________
удачи))
Понравилось решение?Жми ЛУЧШИЙ!)




Для нахождения объема правильной четырехугольной пирамиды сначала нужно найти площадь основания и высоту.
Площадь основания четырехугольной пирамиды можно найти, разделив ее на два треугольника. Поскольку сторона основания равна 5√2, площадь одного треугольника составляет:
Площадь треугольника = (сторона^2 * √3) / 4 = (5√2)^2 * √3 / 4 = 25 * 2 * √3 / 4 = 25√3 / 2 = 12.5√3
Таким образом, площадь основания составляет 2 * 12.5√3 = 25√3.
Чтобы найти высоту пирамиды, мы можем использовать теорему Пифагора на треугольнике с боковым ребром и половиной диагонали основания. Диагональ основания равна стороне основания умноженной на √2, то есть 5√2 * √2 = 10.
Высота пирамиды найдется как катет прямоугольного треугольника, где один катет равен половине диагонали основания (10/2 = 5) и гипотенуза равна боковому ребру (13). Тогда высота равна:
высота^2 = гипотенуза^2 - катет^2 высота^2 = 13^2 - 5^2 высота^2 = 169 - 25 высота^2 = 144 высота = √144 высота = 12
Теперь мы можем найти объем пирамиды, используя формулу:
Объем пирамиды = (площадь основания * высота) / 3 = (25√3 * 12) / 3 = 300√3 / 3 = 100√3
Таким образом, объем пирамиды равен 100√3 кубических сантиметров.


Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili