 
50 баллов!!!!!!Шесть точек А-F(в соответствии с латинским алфавитом), расположены на прямой в
некотором порядке так,что АВ=1,ВС=3,СD=4,DЕ=5,ЕF=10,FА=11.Какие две точки крайние? 0
        0
         0
        0
    Ответы на вопрос
 
        ВА=АВ= 1,
ВС=3,
СД= 4,
ДЕ=ЕД 5,
ЕF= 11.
Ответ. а) В и F
 0
                    0
                     0
                    0
                 
        Для удобства рассуждений,
рассмотрим все эти точки на числовой прямой (числовой оси).
Сопоставим всем буквам определённые числа.
Отметим начальную точку A в нуле этой числовой прямой.
Есть только две точки, удалённые от точки A ( 0 ) на 11 единиц.
Это точки ( 11 ) и ( –11 )
–11 . . . . . . . . . . . . . . . . . . . . . A(0) . . . . . . . . . . . . . . . . . . . . . 11
В одной из них должны находится точка F,
поскольку длина отрезка FA = 11.
Выбрав левую или правую ориентацию точки F мы придём к одной или другой конструкции точек, которые будут отличаться друг от друга – как отражение в зеркале (flip), поэтому в любом случае, крайние точки конструкции и там и там будут одни и те же (у ботинка есть пятка и носок – это его крайние точки, у отражённого в зеркале ботинка тоже есть пятка и носок – те же крайние точки, хоть и обращённые).
Итак, нам безразлично, с какой стороны выбирать положение точки F, поэтому для минимизации усложнений в рассуждениях выберем точку F с положительной координатой F (11) .
. . . . . . A(0) . . . . . . . . . . . . . . . . . . . . . F(11)
Аналогично, точка B может быть расположена на числе 1 или –1, поскольку оба этих числа удалены на единицу от нуля. Теперь, когда положение точки F(11) уже выбрано – выбор точки B на числе (-1) приведёт к тому, что точка B(–1) будет расположена за пределами отрезка AF, а выбор точки B на числе (1) приведёт к тому, что точка B(1) будет расположена внутри отрезка AF. Поэтому выбор числа для точки B – вопрос важный и принципиальный, который уже нельзя решать случайным произвольным выбором. Итак, пусть B – это какое-то число, либо (1), либо (–1), какое именно, мы пока не знаем, но выясним это в процессе решения.
Так что мы можем записать, что
Теперь точка C. Она удалена от точки B на 3, поскольку отрезок BC=3. Куда именно нужно отступать от точки B – влево или вправо,
мы опять же не знаем.
Так что мы можем записать, что
Аналогично, точка D. Она удалена от точки C на 4,
поскольку отрезок CD=4.
Так что:
Точка E удалена от точки D на 5, поскольку отрезок DE=5.
Точка F удалена от точки E на 10, т.к. отрезок EF=10.
Но ведь мы знаем, что F=11, тогда:
даже если сложить все слагаемые слева, то 21 никак не наберётся, значит:
никакие комбинации знаков слева
не могут обнулить выражение, а значит:
никакие комбинации знаков слева
не сравняют выражение с пятёркой, а значит:
отсюда ясно, какие нужно использовать знаки:
восстанавливаем выражение в обратную сторону:
Т.е.:
B = –1 ;
C = –1+3 = 2 ;
D = –1+3 + 4 = 2+4 = 6 ;
E = –1+3+4 – 5 = 6 – 5 = 1 ;
F = –1+3+4–5 + 10 = 1 + 10 = 11 ;
B(–1) . A(0) . E(1) . C(2) . . . . . . . . . . . . . D(6) . . . . . . . . . . . . . . . . . F(11)
Ясно, что крайними точками тут являются точки B и F .
О т в е т : B и F .
 0
                    0
                     0
                    0
                 
            Используя информацию о расстояниях между точками, мы можем определить их относительные позиции на прямой.
Исходя из данных задачи, можем записать следующие уравнения:
АВ = 1 ВС = 3 СD = 4 DЕ = 5 ЕF = 10 FА = 11
Из уравнения АВ = 1 следует, что расстояние между точками А и В равно 1. Мы также знаем, что FА = 11, поэтому точка А находится на крайней правой позиции.
Теперь рассмотрим уравнения DЕ = 5 и ЕF = 10. Из них следует, что расстояние между точками D и F равно 15. Учитывая, что FА = 11, мы можем заключить, что расстояние между точками D и A больше 11. Таким образом, точка D не может быть крайней левой.
Итак, точка А - крайняя правая точка. Остается определить, какая точка является крайней левой. Рассмотрим уравнение ВС = 3. Так как мы исключили точку D как возможную крайнюю левую, то точка В должна быть крайней левой.
Таким образом, крайние точки на прямой - A и B.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			