
Вопрос задан 22.11.2020 в 12:45.
Предмет Геометрия.
Спрашивает Смирнова Соня.
Помогите срочно! Дан треугольник ABC (угол C=90 градусов), угол B=30 градусов, AB=6 см, DA
перпендикулярно плоскости ABC, DC=2 корень из 3 Найдите угол между плоскостями ABC и DBC

Ответы на вопрос

Отвечает Шевчук Саша.
ДАНО: плоскость АВС ; угол ACB = 90° ; AD перпендикулярен ( АВС ) ; ABC = 30° ; AB = 6 см ; DC = 2√3 см.
НАЙТИ: угол между ( АВС ) и ( DBC )
_______________________________
РЕШЕНИЕ:
Чтобы найти угол между двумя плоскостями, нужно найти линейный угол двугранного угла.
Линейным углом двугранного угла называется угол, образованный лучами с вершиной на прямой а ( ребре ), лучи которого лежат на гранях двугранного угла и перпендикулярны прямой а ( ребру )
1) АD перпендикулярен ( АВС )
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости =>
AD перпендикулярен АС, АВ, ВС
2) AD перпендикулярен АС
АС перпендикулярен ВС
Значит, по теореме о трёх перпендикулярах
CD перпендикулярен ВС
Следовательно, угол АСD - линейный угол двугранного угла АВСD, то есть угол ACD - искомый угол между плоскостями АВС и DBC
3) Рассмотрим ∆ АВС ( угол АСВ = 90° ):
Катет, лежащий против угла в 30°, равен половине гипотенузы.
АС = 1/2 × АВ = 1/2 × 6 = 3 см
2) Рассмотрим ∆ АСD ( угол CAD = 90° ):
cos ACD = AC / DC =

Значит, угол ACD = 30°
ОТВЕТ: угол между ( АВС ) и ( DBC ) = 30°
НАЙТИ: угол между ( АВС ) и ( DBC )
_______________________________
РЕШЕНИЕ:
Чтобы найти угол между двумя плоскостями, нужно найти линейный угол двугранного угла.
Линейным углом двугранного угла называется угол, образованный лучами с вершиной на прямой а ( ребре ), лучи которого лежат на гранях двугранного угла и перпендикулярны прямой а ( ребру )
1) АD перпендикулярен ( АВС )
Если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой, лежащей в этой плоскости =>
AD перпендикулярен АС, АВ, ВС
2) AD перпендикулярен АС
АС перпендикулярен ВС
Значит, по теореме о трёх перпендикулярах
CD перпендикулярен ВС
Следовательно, угол АСD - линейный угол двугранного угла АВСD, то есть угол ACD - искомый угол между плоскостями АВС и DBC
3) Рассмотрим ∆ АВС ( угол АСВ = 90° ):
Катет, лежащий против угла в 30°, равен половине гипотенузы.
АС = 1/2 × АВ = 1/2 × 6 = 3 см
2) Рассмотрим ∆ АСD ( угол CAD = 90° ):
cos ACD = AC / DC =
Значит, угол ACD = 30°
ОТВЕТ: угол между ( АВС ) и ( DBC ) = 30°



Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili