Вопрос задан 27.10.2020 в 11:21. Предмет Геометрия. Спрашивает Мамина Влада.

На стороне BC параллелогамма АВСD взята точка М так, что АВ=ВМ. а) Докажите, что АМ - биссектриса

угла ВАD. б) Найдите периметр параллелограмма, если СD=8 см, СМ=4 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Алиева Алина.
Б) ВС=ВМ+МС, так как ВМ=АВ=> ВМ=АВ=СД=8 см=> ВС=8+4=12
Равсд=8+8+12+12=40 см
а)Т.к. АВСД это параллелограмм, то стороны ВС//АД
АМ- является секущей прямой, и при пересечении сторон, она образует равные противолежащие углы, в нашем случае это ВМА и МАД.
А так как треугольник АВМ является равнобедренным, значит его углы соответственно равны=> углы ВАМ=ВМА=МАД=> АМ- является биссектрисой.
0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос