Вопрос задан 19.10.2020 в 16:50. Предмет Геометрия. Спрашивает Козыр Эмилия.

Ребятки, помогите очень срочно, прямо сейчас!=) Найдите площадь кольца, если хорда внешней

окружности, касающаяся внутренней окружности, равна 18 см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Салахбекова Мадина.
Если соединить концы хорды с центром окружности, то получим равнобедренный прямоугольный треугольник с острыми углами по 45 градусов. Т.к. треугольник равнобедренный, то прямая от центра окружности до точки касания малой окружности и хорды равна половине хорды, то это будет 9 - радиус малой окружности, а радиус большой по теореме Пифагора: 9*9+9*9= корень из 162 - радиус большой окружности, а значит, мы всё знаем : Формула площади кольца: 
пи(Rбольшой^2-Rмалой^2)=пи*((корень из 162) в квадрате) - 9*9)= пи*(162-81)=пи*81

0 0

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос