Вопрос задан 08.09.2020 в 14:36. Предмет Алгебра. Спрашивает Баландин Никита.

выполните умножение: а)(y-3)(y+3) б)(1-x)(1+x) в)(m-n)(m+n) г)(x+y)(x-y) д)(x-2)(2+x) е)(c+a)(a-c)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

а) (y-3)(y+3)

To multiply these two binomials, we can use the distributive property. We multiply each term in the first binomial by each term in the second binomial and then combine like terms, if any.

Let's start by multiplying the first terms of each binomial: y * y = y^2

Next, let's multiply the outer terms: y * 3 = 3y

Then, let's multiply the inner terms: -3 * y = -3y

Finally, let's multiply the last terms: -3 * 3 = -9

Now, let's combine the like terms: y^2 + 3y - 3y - 9

The 3y and -3y cancel each other out, so we are left with: y^2 - 9

Therefore, the product of (y-3)(y+3) is y^2 - 9.

б) (1-x)(1+x)

Using the same process as above, let's multiply these two binomials:

First terms: 1 * 1 = 1

Outer terms: 1 * x = x

Inner terms: -1 * 1 = -1

Last terms: -1 * x = -x

Combining the like terms: 1 + x - 1 - x

The x and -x cancel each other out, so we are left with: 1 - 1

The result is 0.

в) (m-n)(m+n)

Again, let's multiply these two binomials:

First terms: m * m = m^2

Outer terms: m * n = mn

Inner terms: -n * m = -mn

Last terms: -n * n = -n^2

Combining the like terms: m^2 + mn - mn - n^2

The mn and -mn cancel each other out, so we are left with: m^2 - n^2

Therefore, the product of (m-n)(m+n) is m^2 - n^2.

г) (x+y)(x-y)

Let's multiply these two binomials:

First terms: x * x = x^2

Outer terms: x * -y = -xy

Inner terms: y * x = xy

Last terms: y * -y = -y^2

Combining the like terms: x^2 - xy + xy - y^2

The xy and -xy cancel each other out, so we are left with: x^2 - y^2

Hence, the product of (x+y)(x-y) is x^2 - y^2.

д) (x-2)(2+x)

Let's multiply these two binomials:

First terms: x * 2 = 2x

Outer terms: x * x = x^2

Inner terms: -2 * 2 = -4

Last terms: -2 * x = -2x

Combining the like terms: 2x + x^2 - 4 - 2x

The 2x and -2x cancel each other out, so we are left with: x^2 - 4

Therefore, the product of (x-2)(2+x) is x^2 - 4.

е) (c+a)(a-c)

Let's multiply these two binomials:

First terms: c * a = ac

Outer terms: c * -c = -c^2

Inner terms: a * a = a^2

Last terms: a * -c = -ac

Combining the like terms: ac - c^2 + a^2 - ac

The ac and -ac cancel each other out, so we are left with: a^2 - c^2

Hence, the product of (c+a)(a-c) is a^2 - c^2.

To summarize: а) (y-3)(y+3) = y^2 - 9 б) (1-x)(1+x) = 0 в) (m-n)(m+n) = m^2 - n^2 г) (x+y)(x-y) = x^2 - y^2 д) (x-2)(2+x) = x^2 - 4 е) (c+a)(a-c) = a^2 - c^2

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос