Вопрос задан 05.09.2020 в 13:10. Предмет Алгебра. Спрашивает Синельник Виктория.

Расстояние между городами А и В равно 400 км. Из А в В выехала грузовая машина, а через 2 ч вслед

за ней выехала легковая машина, скорость которой в 1,5 раза больше скорости грузовой. Найдите скорость грузовой машины, если известно, что она прибыла в В на 1 ч 20 мин позже легковой.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that the distance between cities A and B is 400 km. A truck leaves city A, and 2 hours later, a car leaves city A at a speed 1.5 times faster than the truck. We need to find the speed of the truck if it arrives in city B 1 hour and 20 minutes later than the car.

Solution

Let's assume the speed of the truck is x km/h. Since the car is 1.5 times faster, its speed is 1.5x km/h.

We can use the formula distance = speed × time to find the time taken by each vehicle to travel from city A to city B.

The time taken by the truck is given by: time taken by truck = distance / speed of truck = 400 / x (in hours).

The time taken by the car is given by: time taken by car = distance / speed of car = 400 / (1.5x) (in hours).

We are given that the truck arrives in city B 1 hour and 20 minutes later than the car. Converting 1 hour and 20 minutes to hours, we get: 1 hour and 20 minutes = 1 + 20/60 = 1.33 hours.

According to the given information, the time taken by the truck is 1.33 hours more than the time taken by the car. So we can set up the following equation:

time taken by truck = time taken by car + 1.33.

Substituting the expressions for the times taken by the truck and the car, we get:

400 / x = 400 / (1.5x) + 1.33.

To solve this equation, we can multiply both sides by x to eliminate the denominators:

400 = 400 / 1.5 + 1.33x.

Simplifying the equation, we have:

400 = (400 / 1.5) + 1.33x.

Now we can solve for x to find the speed of the truck.

Calculation

Let's calculate the speed of the truck using the equation derived above.

400 = (400 / 1.5) + 1.33x.

Multiplying both sides by 1.5 to eliminate the fraction, we get:

600 = 400 + 1.33x.

Subtracting 400 from both sides, we have:

200 = 1.33x.

Dividing both sides by 1.33, we get:

x = 200 / 1.33 ≈ 150.38.

Therefore, the speed of the truck is approximately 150.38 km/h.

Answer

The speed of the truck is approximately 150.38 km/h.

Note: The answer is rounded to two decimal places.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос