
Помогите пожалуйста решить уравнение sin10x= -1


Ответы на вопрос

Конечно, давайте решим уравнение sin(10x) = -1.
Сначала найдём все значения угла, для которых синус равен -1. Синус равен -1 в четвертом квадранте угловой окружности, где угол составляет -π/2 (или -90 градусов).
Таким образом, мы можем записать уравнение для нахождения таких углов:
10x = -π/2 + 2kπ, где k - целое число (поскольку синус имеет период 2π)
Теперь нужно найти значения x, деля каждую сторону уравнения на 10:
x = (-π/2 + 2kπ) / 10
Для различных целых значений k мы найдём соответствующие значения x.
Например, при k = 0:
x = (-π/2) / 10 = -π/20
Также, для k = 1:
x = (-π/2 + 2π) / 10 = (3π/2) / 10 = 3π/20
И так далее для других целых значений k.
Таким образом, уравнение sin(10x) = -1 имеет бесконечное количество решений вида x = (-π/2 + 2kπ) / 10, где k - целое число, и все эти значения представляют углы, для которых sin(10x) = -1.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili