
Вопрос задан 05.09.2020 в 01:20.
Предмет Алгебра.
Спрашивает Иванов Миша.
Решить логарифмическое уравнение: lg(x+5)=lg(5x+1)


Ответы на вопрос

Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Чтобы решить данное логарифмическое уравнение, мы должны применить свойство логарифма, которое гласит: lg(a) = lg(b) тогда и только тогда, когда a = b.
Исходное уравнение: lg(x+5) = lg(5x+1)
Теперь мы можем применить свойство логарифма и установить равенство между аргументами:
x + 5 = 5x + 1
Перенесем все члены с x на одну сторону уравнения:
x - 5x = 1 - 5
-4x = -4
Для избавления от отрицательного коэффициента, умножим обе части уравнения на -1:
4x = 4
Теперь разделим обе части уравнения на 4:
x = 1
Таким образом, решением данного логарифмического уравнения является x = 1.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili