
Найдите производную (tgx)^(6x)


Ответы на вопрос

Finding the Derivative of (tgx)^(6x)
To find the derivative of the function (tgx)^(6x), we can use the chain rule. The chain rule states that if we have a composite function, f(g(x)), then the derivative of f(g(x)) is given by f'(g(x)) * g'(x).
In this case, our composite function is (tgx)^(6x), where f(u) = u^6 and g(x) = tgx. Let's find the derivatives of f(u) and g(x) separately and then apply the chain rule.
The derivative of f(u) = u^6 is given by f'(u) = 6u^5.
The derivative of g(x) = tgx is given by g'(x) = sec^2(x).
Now, let's apply the chain rule:
f'(g(x)) = f'(tgx) * g'(x)
Substituting the derivatives we found earlier:
f'(tgx) = 6(tgx)^5
g'(x) = sec^2(x)
Therefore, the derivative of (tgx)^(6x) is:
(6(tgx)^5) * sec^2(x)
Note: Please keep in mind that the above answer is based on the information provided in the search results. It's always a good practice to double-check the calculations and consult reliable sources for confirmation.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili