
Помогите решить уравнение sinx+sin2x+sin3x=0


Ответы на вопрос

Для решения данного уравнения sinx + sin2x + sin3x = 0, мы можем использовать формулу суммы синусов:
sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
Применим эту формулу к уравнению:
sinx + sin2x + sin3x = 0
sinx + 2sinxcosx + (3sinx - 4sin^3x) = 0
Перепишем уравнение:
-4sin^3x + 3sinx + 2sinxcosx + sinx = 0
Приведем подобные слагаемые:
-4sin^3x + 4sinx + 2sinxcosx = 0
Вынесем sinx за скобки:
sinx(-4sin^2x + 4 + 2cosx) = 0
Теперь рассмотрим два случая:
1) sinx = 0:
Если sinx = 0, то x = 0, так как sin0 = 0.
2) -4sin^2x + 4 + 2cosx = 0:
Перепишем уравнение в виде:
4sin^2x - 2cosx - 4 = 0
Применим тригонометрическую формулу:
cos^2x = 1 - sin^2x
4(1 - cos^2x) - 2cosx - 4 = 0
Раскроем скобки:
4 - 4cos^2x - 2cosx - 4 = 0
-4cos^2x - 2cosx = 0
Вынесем -2cosx за скобки:
-2cosx(cosx + 2) = 0
Теперь рассмотрим два случая:
a) -2cosx = 0:
Если -2cosx = 0, то cosx = 0. Решениями этого уравнения будут x = π/2 + πk, где k - целое число.
b) cosx + 2 = 0:
Если cosx + 2 = 0, то cosx = -2. Но такого значения косинуса не существует, так как его значения лежат в интервале [-1, 1]. Поэтому этот случай не имеет решений.
Итак, решениями уравнения sinx + sin2x + sin3x = 0 являются x = 0, а также x = π/2 + πk, где k - целое число.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili