Вопрос задан 31.08.2020 в 04:11. Предмет Алгебра. Спрашивает Мак Юлия.

Найдите корни уравнения а) (3х+2)(х-4)=0 б) (х-2)^2-1=0

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Уравнение а) (3х + 2)(х - 4) = 0

Чтобы найти корни этого уравнения, мы должны приравнять каждый множитель к нулю и решить получившиеся уравнения. Давайте это сделаем.

1. Первый множитель: 3х + 2 = 0 Вычитаем 2 с обеих сторон: 3х = -2 Делим на 3: х = -2/3

2. Второй множитель: х - 4 = 0 Добавляем 4 с обеих сторон: х = 4

Таким образом, корни уравнения (3х + 2)(х - 4) = 0 равны х = -2/3 и х = 4.

Уравнение б) (х - 2)^2 - 1 = 0

Чтобы найти корни этого уравнения, мы должны решить квадратное уравнение. Давайте разберемся с этим.

1. Раскроем квадрат: (х - 2)^2 - 1 = 0 (х - 2)^2 = 1 (х - 2)(х - 2) = 1

2. Распишем и упростим квадратное уравнение: х^2 - 4х + 4 = 1 х^2 - 4х + 3 = 0

3. Разложим на множители: (х - 1)(х - 3) = 0

Теперь приравняем каждый множитель к нулю и найдем корни:

1. Первый множитель: х - 1 = 0 х = 1

2. Второй множитель: х - 3 = 0 х = 3

Таким образом, корни уравнения (х - 2)^2 - 1 = 0 равны х = 1 и х = 3.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос