Вопрос задан 29.06.2020 в 18:54. Предмет Алгебра. Спрашивает Скутеле Катрина.

Измерение дальности до объекта осуществляется без систематических ошибок. Случайная ошибка

подчиняется нормальному закону со средним квадратическим отклонением 25 метров. Найти вероятность измерения дальности с ошибкой, не превосходящей по абсолютной величине 25 метров
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ковальчук Даша.
Систематической погрешности нет.  Ошибка измерения определяется только случайной погрешностью.
Нормальный закон распределения со средним квадратичным отклонением σ означает, что функция плотности вероятности имеет вид:
f(x)= \frac{1}{ \sqrt{2 \pi \sigma } } e^{- \frac{x^2}{2 \sigma ^2} } (1)

График функции (1) имеет вид "колокола" симметричного относительно прямой х=0. (В более общем виде тут еще задействовано матожидание (или "среднее значение" х) m (и колокол тогда смещатся), но тогда в смысле ошибок можно было бы говорить о наличии систематической погрешности, а она у нас равна 0. Вот мы и считаем что функция распределения вероятности симметрична относительно 0 ).

С учетом того, что среднее квадратичное отклонение σ=25 функция (1) примет вид:
f(x)= \frac{1}{ \sqrt{2 \pi 25 } } e^{- \frac{x^2}{2*25} } (2)
Функция плотности вероятности f(x) является 1-й производной функции распределения случайной  величины x F(x). Т.е:
f(x)= \frac{dF}{dx} (3)

Что означают такие функции? Что можно найти с их помощью?
Например вероятность того, что случайная величина х попадет в диапазон (интервал) (a1; a2) определяется отношением:
P(a, b)= \int\limits^{b}_{a} f{x} , dx=F(a)-F(b) (4)
При этом функция распределения F(x) задает вероятность попадания случайной величины в интервал (-∞, x).
 Итак У нас известна функция распределения вероятности (2) известен задан диапазон в который должна попасть случайная величина (наша погрешность), (-25, 25 ). Чтобы найти вероятность того, что ошибка не вылезет за пределы заданного интервала, все что нам нужно сделать, это взять интеграл вида (4), подставив туда вместо f(x) её выражение (2) и вместо пределов интегрирования поставить границы интервала -25 и 25. Т.е.
P(-25,25)= \int\limits^{25}_{-25} {  \frac{1}{ \sqrt{2 \pi \sigma } } e^{- \frac{x^2}{2 \sigma ^2} } } \, dx =   \frac{1}{ \sqrt{2 \pi 25 }}\int\limits^{25}_{-25}  e^{- \frac{x^2}{2*25^2} } } \, dx (5)
И все бы хорошо, НО интеграл вида (5) "неберушка", т.е. его нельзя выразить в элементарных функциях. Исключение составляют интегралы с бесконечными, или "полубесконечными" пределами интегрирования (интеграл Пуассона например). Что нам делать? Как быть? Инегралы такого рода можно посчитать различными способами численно (приближенно) с любой наперед заданной точностью. Мы этого правда делать не будем. Это уже все проделано до нас и составлено уйма таблиц. Их можно найти и в книжном(бумажном)  и в электроном вариантах. Однако есть один момент.Затабулировано целое семейство похожих функций, имеющих к тому же похожие названия, например мне по запросу навскидку попались попадались такие:
1) Функция Лапласа (в другом месте Интеграл вероятности) или даже так:
Функция стандартного нормального распределения
F(x)=  \frac{1}{ \sqrt{2 \pi } }   \int\limits^x_0 {e^{- \frac{t^2}{2} }} \, dt (6)

2) Еще один интеграл вероятности:
F(t)=  \frac{2}{ \sqrt{\pi } }   \int\limits^t_0 {e^{- t^2 }} \, dt   (7)

3) где то вылезла таблица функции
F(x)= \int\limits^x_0 {e^{-t^2} \, dt (8).
Что с этим делать? Смириться и внимательно смотреть, какая именно функция дана в таблице. При этом исходный интеграл (5) можно свести к табличному интегралу путем замены переменных и вынесения множителя.
Например так:
 \int\limits^{25}_{-25} { \frac{1}{ \sqrt{2 \pi \sigma } } e^{- \frac{x^2}{2 \sigma ^2} } } \, dx
Подынтегральная функция (четная) ⇒ можно записать:
 \int\limits^{25}_{-25} { \frac{1}{ \sqrt{2 \pi \sigma } } e^{- \frac{x^2}{2 \sigma ^2} } } \, dx = 2*\int\limits^{25}_{0} { \frac{1}{ \sqrt{2 \pi \sigma } } e^{- \frac{x^2}{2 \sigma ^2} } } \, dx (9)
далее вводим новую переменную
u=x/ \sigma тогда
x=u* \sigma      dx=\sigma du
при этом если x=0, то u=0,
x=25,   u=σx=σ*25=A
интеграл (9) приобретает вид:
2*\int\limits^{A}_{0} { \frac{\sigma }{ \sqrt{2 \pi \sigma } } e^{- \frac{u^2}{2 } } } \, du=2*\frac{ \sqrt{\sigma } }{ \sqrt{2 \pi }}*\int\limits^{A}_{0} e^{- \frac{u^2}{2 } } } \, du=2*\sqrt{\sigma }*\frac{ 1 }{ \sqrt{2 \pi }}*\int\limits^{A}_{0} e^{- \frac{u^2}{2 } } } \, du (10)
Получили интеграл вида (6) умноженный на 2σ,
ВНИМАНИЕ! ПРЕДЕЛЫ ИНТЕГРИРОВАНИЯ ИЗМЕНИЛИСЬ!

Тот, кто "дружит" с электронными таблицами может поискать в них похожие функции. Это будет удобно, если необходимо выполнить "серию" расчетов, мне например (после некоторых мытарств) удалось в своем Сalc( у меня Libre Office 4.2 ) найти функцию 

NORMDIST(X; m; σ; C), которая в зависимости от параметра C выдает
значение либо функции распределения случайной величины (с=1), либо значение плотности вероятности (c=0) в точке X.
Тут
 m матожидание случайной величины, у нас оно =0 как мы уже говорили выше.
 σ среднеквадратичное отклонение =25.

Таким образом вычиление интеграла (5) обошлось сравнительно "малой кровью"
когда в таблице вычислили выражение:
NORMDIST(25; 0; 25; 1) - NORMDIST(-25; 0; 25; 1)
 Итого
Ответ P(-25;25)≈0,6827

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос