
Докажите, что квадратный корень из 11 является иррациональным числом


Ответы на вопрос

Предположим обратное: √11 - рациональное число, тогда по определению
рац. числа √11 можно представить в виде несокаратимой дроби m/n
где m и n - целые числа.
√11 = m/n
Возведем в квадрат обе части равенства: 11 = m²/n², или m² = 11n² =>
m² делится на 11, а т.к. 11 - простое, следовательно, m тоже делится на 11, откуда m = 11k,
тогдаm² = 121k² или 121k²= 11n² => 11k² = n² то есть n² делится на 11,
а значит,а т.к. 11 - простое, то n делится на на 11, следовательно, числа m и n имеют общий делитель 11, а следовательно дробь m/n - сократима, что противоречит определению рационального числа. Таким образом, предположение о том, что √11 является рац. числом неверно, следовательно √11 - иррациональное.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili