Вопрос задан 27.01.2020 в 06:42. Предмет Алгебра. Спрашивает Будагян Артём.

cos^2x - 1/2sin2x + cosx = sinx

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Грошева Полина.

cos^2x - 1/2sin2x + cosx = sinx

sin2x= 2sinx*cosx

cos^2x- 1/2*2sinx*cosx+cosx = sinx

cos^2x - 1/2*2sinx*cosx+cosx - sinx = 0

cos^2x-sinx*cosx+cosx-sinx=0

cosx(cosx+1) - sinx(cosx+1)=0

(cosx+1)*(cosx-sinx)=0

cosx+1=0  -> cosx= -1  -> x=pi+2pi*K

cosx-sinx=0  Делим уравнение на корень из 2

sin(pi/4-x)=0

pi/4-x=pi*n

x=pi/4-pi*n

 

 

 

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос