
Построить график функции y=3 (x+1)^2 y=3 (x-1)^2


Ответы на вопрос

ymin=0 при x=-1 парабола ось симметрии х=-1 убывает при х до -1 и
возрастает при х больших -1
-------------
у=3(х-1)² корень х=1 при х=0 у=3
умин=0 при х=1 парабола ось симметрии х=1 убывает при х до 1 и возрастает при х больших 1
графики приложены.



Graphing the Functions
To graph the functions y = 3(x + 1)^2 and y = 3(x - 1)^2, we can start by analyzing the equations.
The first equation, y = 3(x + 1)^2, represents a parabola with its vertex at the point (-1, 0). Since the coefficient of the x^2 term is positive, the parabola opens upwards. The value of 3 in front of the parentheses determines the vertical stretch or compression of the parabola.
The second equation, y = 3(x - 1)^2, also represents a parabola with its vertex at the point (1, 0). Similar to the first equation, the parabola opens upwards due to the positive coefficient of the x^2 term. The value of 3 in front of the parentheses determines the vertical stretch or compression of the parabola.
To graph these functions, we can plot a few points and then connect them to form the parabolas. Let's calculate the y-values for a few x-values to get a sense of the shape of the graphs.
For the first equation, y = 3(x + 1)^2: - When x = -2, y = 3(-2 + 1)^2 = 3(1)^2 = 3(1) = 3 - When x = -1, y = 3(-1 + 1)^2 = 3(0)^2 = 3(0) = 0 - When x = 0, y = 3(0 + 1)^2 = 3(1)^2 = 3(1) = 3 - When x = 1, y = 3(1 + 1)^2 = 3(2)^2 = 3(4) = 12 - When x = 2, y = 3(2 + 1)^2 = 3(3)^2 = 3(9) = 27
For the second equation, y = 3(x - 1)^2: - When x = 0, y = 3(0 - 1)^2 = 3(-1)^2 = 3(1) = 3 - When x = 1, y = 3(1 - 1)^2 = 3(0)^2 = 3(0) = 0 - When x = 2, y = 3(2 - 1)^2 = 3(1)^2 = 3(1) = 3 - When x = 3, y = 3(3 - 1)^2 = 3(2)^2 = 3(4) = 12 - When x = 4, y = 3(4 - 1)^2 = 3(3)^2 = 3(9) = 27
Now, let's plot these points on a graph:

The blue curve represents the graph of y = 3(x + 1)^2, and the orange curve represents the graph of y = 3(x - 1)^2. As you can see, both graphs are symmetric with respect to the vertical line x = -1 and x = 1, respectively. The vertex of each parabola is the lowest point on the curve.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili