
Решите уравнения, используя преобразование выделение полного квадрата двучлена: 2)х^2+12х+32=0
4)х^2-4х-45=0 Решите пожалуйста ! Заранее спасибо )

Ответы на вопрос

х² +2х*6 +36 -36 +32 = 0
(х+6)² = 4
х +6 = 2 или х + 6 = -4
х = -4 х = -10
4)х^2-4х-45=0
х² -2*2 +4 -4 -45 = 0
(х-2)² = 49
х-2 = 7 или х-2 = -7
х = 9 х = -5



Solving Equations using Completing the Square Method
To solve the given equations using the completing the square method, we will follow these steps:
1. Move the constant term to the other side of the equation. 2. Divide the coefficient of the x^2 term by 2 and square it. 3. Add the squared value obtained in step 2 to both sides of the equation. 4. Factor the perfect square trinomial on the left side of the equation. 5. Solve for x by taking the square root of both sides of the equation. 6. Simplify the square root expression and solve for x.
Let's solve the equations one by one.
Equation 2: x^2 + 12x + 32 = 0
Step 1: Move the constant term to the other side of the equation: x^2 + 12x = -32
Step 2: Divide the coefficient of the x^2 term by 2 and square it: (12/2)^2 = 36
Step 3: Add the squared value obtained in step 2 to both sides of the equation: x^2 + 12x + 36 = -32 + 36 (x + 6)^2 = 4
Step 4: Factor the perfect square trinomial on the left side of the equation: (x + 6)^2 = 2^2
Step 5: Solve for x by taking the square root of both sides of the equation: x + 6 = ±2
Step 6: Simplify the square root expression and solve for x: x = -6 ± 2 x = -8 or x = -4
Therefore, the solutions to the equation x^2 + 12x + 32 = 0 are x = -8 and x = -4.
Equation 4: x^2 - 4x - 45 = 0
Step 1: Move the constant term to the other side of the equation: x^2 - 4x = 45
Step 2: Divide the coefficient of the x^2 term by 2 and square it: (-4/2)^2 = 4
Step 3: Add the squared value obtained in step 2 to both sides of the equation: x^2 - 4x + 4 = 45 + 4 (x - 2)^2 = 49
Step 4: Factor the perfect square trinomial on the left side of the equation: (x - 2)^2 = 7^2
Step 5: Solve for x by taking the square root of both sides of the equation: x - 2 = ±7
Step 6: Simplify the square root expression and solve for x: x = 2 ± 7 x = 9 or x = -5
Therefore, the solutions to the equation x^2 - 4x - 45 = 0 are x = 9 and x = -5.
If you have any further questions, feel free to ask!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili