Вопрос задан 16.01.2020 в 12:11. Предмет Алгебра. Спрашивает Куликов Герман.

x^3+3x^2-4=0 не понимаю, помогите плиз!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванов Кирилл.

x^3+3x^2-4=0 

делители -4:±1,±2,±4

P₃(1)=1+3-4=0,значит x=1 -корень уравнения P(x)=0

  x^3+3x^2-4     / x-1

 - x^3-x^2                 x^2+4x+4

  __________ 

           4x^2-4

-          4x^2-4x

________________

               x  - 1

-              x-1

___________________

0

 

x- 1=0                     x=1                x=1

x^2+4x+4=0            (x+2)^2=0       x=-2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solving the Equation x^3 + 3x^2 - 4 = 0

To solve the equation x^3 + 3x^2 - 4 = 0, we need to find the values of x that satisfy this equation. There are different methods to solve cubic equations, such as factoring, using the rational root theorem, or using numerical methods. Let's explore the options.

Factoring the Equation

One way to solve a cubic equation is by factoring. However, factoring a cubic equation can be quite challenging, especially when there are no obvious factors. In this case, factoring may not be the most efficient method.

Rational Root Theorem

The rational root theorem can be used to find rational solutions (if they exist) for a polynomial equation. According to the rational root theorem, any rational root of the equation x^3 + 3x^2 - 4 = 0 must be of the form p/q, where p is a factor of the constant term (-4) and q is a factor of the leading coefficient (1).

In this case, the possible rational roots are ±1, ±2, and ±4. We can substitute these values into the equation to check if any of them satisfy the equation. However, it is important to note that the rational root theorem only guarantees the existence of rational roots, and there is no guarantee that the equation has any rational solutions.

Numerical Methods

If factoring and the rational root theorem do not yield any solutions, we can resort to numerical methods to approximate the solutions. One common numerical method is the Newton-Raphson method, which can be used to find the roots of a function. However, applying numerical methods can be complex and time-consuming, especially for higher-degree polynomials.

Conclusion

In summary, the equation x^3 + 3x^2 - 4 = 0 can be solved using various methods such as factoring, the rational root theorem, or numerical methods. However, without further information or context, it is difficult to determine the exact solutions to this equation. If you provide more details or specify the method you would like to use, I can assist you further.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос