
Катер за 1 ч 20 мин проплывает по течению реки 24 км,а против течения за 1,5 ч на 3 км меньше
.найдите скорость течения реки и собственную скорость катера .

Ответы на вопрос

24-3=21
х-собств.скорость
у-скорость течения
24:4/3=х+у
21:1,5=х-у
24*3/4=х+у
18=х+у
14=х-у
х=18-у
14=18-у-у
2у=4
у=2-скорость течения
х=18-2=16-собств.скорость



Problem Analysis
We are given that a boat travels 24 km downstream in 1 hour and 20 minutes, and it travels 3 km less upstream in 1 hour and 30 minutes. We need to find the speed of the river current and the speed of the boat.Downstream Speed Calculation
Let's assume the speed of the boat in still water is x km/h, and the speed of the river current is y km/h. When the boat is traveling downstream, it benefits from the speed of the river current, so its effective speed is x + y km/h. We can use this information to set up the following equation:24 = (x + y) × (1 + 20/60)
Upstream Speed Calculation
When the boat is traveling upstream, it has to overcome the speed of the river current, so its effective speed is x - y km/h. We can use this information to set up the following equation:24 - 3 = (x - y) × (1 + 30/60)
Solving the Equations
We can solve these two equations simultaneously to find the values of x and y.Solution
Let's solve the equations to find the speed of the river current and the speed of the boat.Solution Details
Using the given information, we can set up the following equations:24 = (x + y) × (1 + 20/60) (Equation 1)
24 - 3 = (x - y) × (1 + 30/60) (Equation 2)
Simplifying Equation 1:
24 = (x + y) × (1.3333)
24 = 1.3333x + 1.3333y
Simplifying Equation 2:
21 = (x - y) × (1.5)
21 = 1.5x - 1.5y
Now we have a system of linear equations:
1.3333x + 1.3333y = 24 (Equation 3)
1.5x - 1.5y = 21 (Equation 4)
We can solve this system of equations using any method, such as substitution or elimination. Let's use the elimination method to solve for x and y.
Multiplying Equation 3 by 1.5 and Equation 4 by 1.3333 to eliminate the y term:
1.99995x + 1.99995y = 36 (Equation 5)
1.99995x - 1.99995y = 28 (Equation 6)
Subtracting Equation 6 from Equation 5 to eliminate the x term:
3.9999y = 8
y = 8 / 3.9999
y ≈ 2
Substituting the value of y into Equation 3:
1.3333x + 1.3333(2) = 24
1.3333x + 2.6666 = 24
1.3333x = 21.3334
x = 21.3334 / 1.3333
x ≈ 16
Therefore, the speed of the river current is approximately 2 km/h and the speed of the boat in still water is approximately 16 km/h.
Answer
The speed of the river current is approximately 2 km/h and the speed of the boat in still water is approximately 16 km/h.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili