
Найдите производную функции f(x)=sin x*(cos x -1); f(x)=xво второй степени*ctg x; f(x)=cos
x(1+sin x); f(x)=x в третей степени*tg x; Помогите пожайлуста!

Ответы на вопрос

2) Аналогично с первого примера
3)
4)



Derivative of f(x) = sin(x) * (cos(x) - 1)
To find the derivative of the function f(x) = sin(x) * (cos(x) - 1), we can use the product rule of differentiation. The product rule states that if we have two functions u(x) and v(x), then the derivative of their product is given by:
d/dx(u(x) * v(x)) = u'(x) * v(x) + u(x) * v'(x)
In this case, u(x) = sin(x) and v(x) = cos(x) - 1. Let's find the derivatives of u(x) and v(x) first:
u'(x) = cos(x)
v'(x) = -sin(x)
Now, we can apply the product rule:
f'(x) = u'(x) * v(x) + u(x) * v'(x)
f'(x) = cos(x) * (cos(x) - 1) + sin(x) * (-sin(x))
Simplifying further:
f'(x) = cos^2(x) - cos(x) - sin^2(x)
Using the trigonometric identity sin^2(x) + cos^2(x) = 1, we can simplify the expression:
f'(x) = 1 - cos(x)
Therefore, the derivative of f(x) = sin(x) * (cos(x) - 1) is f'(x) = 1 - cos(x).
Derivative of f(x) = x^2 * ctg(x)
To find the derivative of the function f(x) = x^2 * ctg(x), we can use the product rule and the derivative of the cotangent function. The cotangent function can be expressed as the ratio of cosine and sine:
ctg(x) = cos(x) / sin(x)
Let's find the derivatives of x^2 and ctg(x) first:
d/dx(x^2) = 2x
d/dx(ctg(x)) = -csc^2(x)
Now, we can apply the product rule:
f'(x) = (2x) * ctg(x) + x^2 * (-csc^2(x))
Simplifying further:
f'(x) = 2x * ctg(x) - x^2 * csc^2(x)
Using the trigonometric identity csc^2(x) = 1 + cot^2(x), we can simplify the expression:
f'(x) = 2x * ctg(x) - x^2 * (1 + cot^2(x))
Therefore, the derivative of f(x) = x^2 * ctg(x) is f'(x) = 2x * ctg(x) - x^2 * (1 + cot^2(x)).
Derivative of f(x) = cos(x) * (1 + sin(x))
To find the derivative of the function f(x) = cos(x) * (1 + sin(x)), we can use the product rule. Let's find the derivatives of cos(x) and (1 + sin(x)) first:
d/dx(cos(x)) = -sin(x)
d/dx(1 + sin(x)) = cos(x)
Now, we can apply the product rule:
f'(x) = (-sin(x)) * (1 + sin(x)) + cos(x) * cos(x)
Simplifying further:
f'(x) = -sin(x) - sin^2(x) + cos^2(x)
Using the trigonometric identity sin^2(x) + cos^2(x) = 1, we can simplify the expression:
f'(x) = -sin(x) - sin^2(x) + (1 - sin^2(x))
f'(x) = -sin(x) - sin^2(x) + 1 - sin^2(x)
f'(x) = -2sin^2(x) - sin(x) + 1
Therefore, the derivative of f(x) = cos(x) * (1 + sin(x)) is f'(x) = -2sin^2(x) - sin(x) + 1.
Derivative of f(x) = x^3 * tg(x)
To find the derivative of the function f(x) = x^3 * tg(x), we can use the product rule and the derivative of the tangent function. The tangent function can be expressed as the ratio of sine and cosine:
tg(x) = sin(x) / cos(x)
Let's find the derivatives of x^3 and tg(x) first:
d/dx(x^3) = 3x^2
d/dx(tg(x)) = sec^2(x)
Now, we can apply the product rule:
f'(x) = (3x^2) * tg(x) + x^3 * sec^2(x)
Therefore, the derivative of f(x) = x^3 * tg(x) is f'(x) = (3x^2) * tg(x) + x^3 * sec^2(x).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili