Вопрос задан 10.01.2020 в 13:46. Предмет Алгебра. Спрашивает Федотов Миша.

Две бригады при совместной работе могут выполнить задание за 16 дней. За сколько дней могла бы

выполнить это задание каждая бригада в отдельности, если первой бригаде на выполнение всего задания потребуется на 24 дня больше, чем второй?Пожалуйста,помогите!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Валиева Полина.
Х - время необходимое второй бригаде
(х+24) - время первой

работали 16 дней

16/х + 16/(х+24) = 1
x^2 - 8x - 384 =0

x 1,2 = (8 + - 40)/2     x1 = -16   x2=24

x=24  дней необходимо второй бригаде
x+24=48 дней необходимо первой

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Task Analysis

To solve this problem, we need to determine how many days it would take each brigade to complete the task individually. We are given that two brigades working together can complete the task in 16 days. We are also given that the first brigade takes 24 days longer than the second brigade to complete the entire task.

Solution

Let's assume that the second brigade takes x days to complete the task. According to the given information, the first brigade takes 24 days longer than the second brigade, so it would take x + 24 days for the first brigade to complete the task.

To find the solution, we can set up an equation based on the work rates of the two brigades. The work rate is inversely proportional to the number of days it takes to complete the task. Therefore, the work rate of the first brigade is 1/(x + 24), and the work rate of the second brigade is 1/x.

When the two brigades work together, their work rates are additive. So, the equation becomes:

1/(x + 24) + 1/x = 1/16

To solve this equation, we can multiply through by the least common multiple of the denominators, which is 16x(x + 24). This gives us:

16x + 16(x + 24) = x(x + 24)

Simplifying the equation:

16x + 16x + 384 = x^2 + 24x

32x + 384 = x^2 + 24x

Rearranging the equation:

x^2 - 8x - 384 = 0

Now we can solve this quadratic equation to find the value of x.

Solving the Quadratic Equation

To solve the quadratic equation x^2 - 8x - 384 = 0, we can use the quadratic formula:

x = (-b ± √(b^2 - 4ac)) / (2a)

In this case, a = 1, b = -8, and c = -384.

Substituting the values into the quadratic formula:

x = (-(-8) ± √((-8)^2 - 4(1)(-384))) / (2(1))

Simplifying:

x = (8 ± √(64 + 1536)) / 2

x = (8 ± √1600) / 2

x = (8 ± 40) / 2

This gives us two possible values for x:

x = (8 + 40) / 2 = 48 / 2 = 24

x = (8 - 40) / 2 = -32 / 2 = -16

Since the number of days cannot be negative, we discard the solution x = -16.

Therefore, the second brigade would take x = 24 days to complete the task on its own, and the first brigade would take x + 24 = 24 + 24 = 48 days to complete the task on its own.

Answer

The second brigade would take 24 days to complete the task on its own, while the first brigade would take 48 days to complete the task on its own.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос