
Вопрос задан 17.06.2019 в 13:52.
Предмет Алгебра.
Спрашивает Байназаров Рома.
в треугольники АВС проведены медианы АК и ВМ, перессекающиеся в точке О. Докажите, что площади
треугольников МОК и АОВ относятся как 1:4

Ответы на вопрос

Отвечает Домрина Лиза.
Треугольники МОК и АОВ подобны по двум углам: МК - средняя линия тр-ка АВС, значит, МК параллельна АВ, тогда в тр-ках МОК и АОВ есть накрест лежащие углы. А их коэфициент подобия: к = МК/АВ = 1/2 (основание в 2 раза больше средней линии). Ну, и известно, что отношение площадей подобных треугольника равно к^2. Отсюда
площадь тр-ка МОК / площадь тр-ка АОВ = 1/4


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili