
Решите методом алгебраического сложения систему уравнений


Ответы на вопрос

5y-2x=4
Поменяем во втором уранвении местами переменные
x-5y=3
-2x+5y=4
Теперь можно легко сложить.
Получаем:
-x=7
x=-7
Подставим в любое уравнение наше -7 вместо X, чтобы узнать y.
5y-2*(-7)=4
5y+14=4
5y=-10
y=-10/5
y=-2



Solving the System of Equations using Algebraic Addition
To solve the system of equations using the method of algebraic addition, we need to find the values of x and y that satisfy both equations. Let's denote the equations as follows:
Equation 1: x^2 + y^2 = 20 Equation 2: 3x + y = 2
To solve the system, we can substitute the value of y from Equation 2 into Equation 1 and solve for x. Let's do that:
From Equation 2, we have y = 2 - 3x. Substituting this into Equation 1, we get:
x^2 + (2 - 3x)^2 = 20
Expanding and simplifying the equation, we have:
10x^2 - 12x - 16 = 0
Now, we can solve this quadratic equation to find the values of x. Using the quadratic formula, we get:
x1 = -0.8 x2 = 2
Next, we can substitute these values of x back into Equation 2 to find the corresponding values of y. Using Equation 2, we have:
y = 2 - 3x
Substituting x1 = -0.8, we get y1 = 4.4. Substituting x2 = 2, we get y2 = -4.
Therefore, the solutions to the system of equations are: - x1 = -0.8, y1 = 4.4 - x2 = 2, y2 = -4
Additional Equation
It seems that there is an additional equation mentioned: xy - 3y^2 = -24. Let's solve this equation as well.
We can rewrite the equation as follows:
xy + 2y^2 = 21
To solve this equation, we can use the values of x and y obtained from the previous step. Let's substitute these values into the equation:
For the first solution (x1 = -0.8, y1 = 4.4): xy - 3y^2 = (-0.8)(4.4) - 3(4.4)^2 = -24.32 - 68.64 = -92.96
For the second solution (x2 = 2, y2 = -4): xy - 3y^2 = (2)(-4) - 3(-4)^2 = -8 + 48 = 40
Therefore, the solutions to the additional equation are: - For x1 = -0.8, y1 = 4.4: xy - 3y^2 = -92.96 - For x2 = 2, y2 = -4: xy - 3y^2 = 40
Conclusion
In summary, the solutions to the system of equations and the additional equation are as follows:
System of Equations: - x1 = -0.8, y1 = 4.4 - x2 = 2, y2 = -4
Additional Equation: - For x1 = -0.8, y1 = 4.4: xy - 3y^2 = -92.96 - For x2 = 2, y2 = -4: xy - 3y^2 = 40
Please let me know if there's anything else I can help you with!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili