
Имеет ли решения система -3х+2у=7 6х-4у=7 и сколько? Помогите пожалуйста


Ответы на вопрос

Solution to the System of Equations
To find the solutions to the system of equations -3x + 2y = 7 and 6x - 4y = 7, we can use the method of substitution or elimination. Let's solve it using the elimination method.
To eliminate one variable, we can multiply the first equation by 2 and the second equation by 3. This will allow us to eliminate the y variable when we add the two equations together.
Multiplying the first equation by 2, we get:
-6x + 4y = 14 Multiplying the second equation by 3, we get:
18x - 12y = 21 Now, we can add the two equations together:
(-6x + 4y) + (18x - 12y) = 14 + 21
Simplifying the equation, we have:
12x - 8y + 18x - 12y = 35
Combining like terms, we get:
30x - 20y = 35
Dividing both sides of the equation by 5, we have:
6x - 4y = 7 We can see that this equation is the same as the first equation in the original system. This means that the two equations represent the same line and have infinitely many solutions. Any point on the line -3x + 2y = 7 will satisfy both equations.
Therefore, the system of equations has infinitely many solutions.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili