Вопрос задан 06.05.2019 в 11:07. Предмет Алгебра. Спрашивает Гончарова Анастасия.

Велосипедист ехал с определенной скоростью 16 км от города до турбазы. Возвращаясь обратно, он

снизил скорость на 4 км.ч. На весь путь туда и обратно велосипедист затратил 2ч 20 минут. Найдите скорость, с которой велосипедист ехал от турбазы до город. Решите подробно,а не копируйте с сайтов. Мне нужно в виде таблицы
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Саньков Виталий.
Решение на фото)))))))))))))))))))))))))))))))))))
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a cyclist traveled from a city to a tourist base at a certain speed of 16 km/h. On the return journey, the cyclist reduced their speed by 4 km/h. The total time taken for the round trip was 2 hours and 20 minutes. We need to find the speed at which the cyclist traveled from the tourist base to the city.

Solution

Let's assume the speed of the cyclist on the return journey (from the tourist base to the city) is x km/h.

To solve this problem, we can use the formula: time = distance / speed.

Let's calculate the time taken for the forward journey (from the city to the tourist base) and the return journey separately.

# Forward Journey:

The distance traveled during the forward journey is the same as the distance traveled during the return journey.

Let's assume the distance between the city and the tourist base is d km.

The time taken for the forward journey is given by: time_forward = d / 16.

# Return Journey:

The time taken for the return journey is given by: time_return = d / x.

# Total Time:

The total time taken for the round trip is given as 2 hours and 20 minutes, which is equal to 2 + 20/60 hours.

Let's calculate the total time in hours: total_time = 2 + 20/60.

Since the total time is the sum of the time taken for the forward journey and the return journey, we can write the equation:

time_forward + time_return = total_time

Substituting the values, we get:

d / 16 + d / x = total_time

Now, let's solve this equation to find the value of x.

Calculation

Let's calculate the value of x using the given information.

The total time is given as 2 hours and 20 minutes, which is equal to 2 + 20/60 hours.

Converting the total time to hours: total_time = 2 + 20/60 = 2.333 hours.

Using the equation d / 16 + d / x = total_time, we can substitute the values and solve for x.

d / 16 + d / x = 2.333

Multiplying through by 16x to eliminate the denominators:

x * d + 16 * d = 2.333 * 16 * x

Simplifying:

x * d + 16 * d = 37.328 * x

Rearranging the equation:

x * d - 37.328 * x = -16 * d

Factoring out x:

x * (d - 37.328) = -16 * d

Dividing both sides by (d - 37.328):

x = (-16 * d) / (d - 37.328)

Now, we need to find the value of d to calculate x.

Unfortunately, the value of d is not provided in the question. Without the value of d, we cannot calculate the exact value of x.

Please provide the value of d so that we can proceed with the calculation and provide you with the final answer.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос