Вопрос задан 06.05.2019 в 11:07. Предмет Математика. Спрашивает Андреева Нина.

(x-2)>x(x-2) как решить

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рейх Ринат.
1) ( х-2) > х(х-2)                                                                                            х-2>Хкв-2х                                                                                                  х-2+2х>Хкв                                                                                                  3х-2>Хкв                                                                                                      корень из (3х-2)>Х
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного уравнения `(x-2) > x(x-2)`, нужно привести его к более простому виду. Давайте разберемся в каждом шаге.

Шаг 1: Раскрытие скобок

Сначала раскроем скобки в правой части уравнения, используя распределительное свойство умножения:

`x(x-2) = x^2 - 2x`

Теперь уравнение принимает вид:

`(x-2) > x^2 - 2x`

Шаг 2: Перенос всех членов в одну сторону

Чтобы решить неравенство, нужно перенести все члены в одну сторону. Для этого вычтем `x^2` и `2x` из обеих частей уравнения:

`(x-2) - (x^2 - 2x) > 0`

Раскроем скобки:

`x - 2 - x^2 + 2x > 0`

Упростим:

`-x^2 + 3x - 2 > 0`

Шаг 3: Факторизация или использование квадратного трехчлена

Теперь мы имеем квадратное неравенство. Чтобы решить его, можно попробовать факторизовать или использовать квадратный трехчлен.

Попробуем факторизовать:

`-(x^2 - 3x + 2) > 0`

`(x - 1)(x - 2) < 0`

Шаг 4: Анализ знаков

Для определения значений `x`, для которых неравенство выполняется, проведем анализ знаков в каждом интервале между корнями факторизованного уравнения `(x - 1)(x - 2)`.

- Интервал 1: `x < 1` Знак `(x - 1)(x - 2)` определяется знаком `x - 1` и `x - 2`: `(+) * (+) = (+)` - неравенство не выполняется на данном интервале.

- Интервал 2: `1 < x < 2` Знак `(x - 1)(x - 2)` определяется знаком `x - 1` и `x - 2`: `(-) * (+) = (-)` - неравенство выполняется на данном интервале.

- Интервал 3: `x > 2` Знак `(x - 1)(x - 2)` определяется знаком `x - 1` и `x - 2`: `(-) * (-) = (+)` - неравенство не выполняется на данном интервале.

Шаг 5: Ответ

На основании анализа знаков, неравенство `(x - 2) > x(x - 2)` выполняется на интервале `1 < x < 2`. Это означает, что значения `x` между 1 и 2 включительно удовлетворяют данному неравенству.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос