Вопрос задан 06.05.2019 в 00:14. Предмет Алгебра. Спрашивает Кутилина Яна.

Найдите координату точке С,которая является серединой отрезка с концами в точках А(-6,8) и В(12,4)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Карасева Алеся.
С=( \frac{x_{1} + x_{2} }{2} ;  \frac{ y_{1} + y_{2} }{2} )
C=( \frac{-6+12}{2} ; \frac{8+4}{2} )=(3;6)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти координаты точки C, которая является серединой отрезка с концами в точках A(-6,8) и B(12,4), можно воспользоваться формулами для нахождения средней точки на отрезке.

Координаты середины отрезка можно найти следующим образом:

1. Середина по оси X: \((x_c) = \frac{{x_a + x_b}}{2}\) 2. Середина по оси Y: \((y_c) = \frac{{y_a + y_b}}{2}\)

где \(A(x_a, y_a)\) и \(B(x_b, y_b)\) - координаты концов отрезка, а \(C(x_c, y_c)\) - координаты середины.

Давайте подставим значения:

1. \(x_c = \frac{{-6 + 12}}{2} = \frac{6}{2} = 3\) 2. \(y_c = \frac{{8 + 4}}{2} = \frac{12}{2} = 6\)

Таким образом, координаты точки C равны (3, 6).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос