Вопрос задан 05.05.2019 в 11:10. Предмет Алгебра. Спрашивает Жылкышым Дархан.

Решите ПОДРОБНО прошу,срочно 1.Определите число корней уравнения a) 9x^2+12x+4=0 б)2x^2+3x-1=0

2.Решите уравнение a)x^2-14x+33=0 б)-3^2+10x-3=0 в)x^4-10x^2+9=0
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чудная Амина.
1. число корней определяется дискриминантом: если он равен 0, то корень один, если меньше нуля, то корней нет, если больше нуля, то будет два корня
а) D = b² - 4ac = 144 - 9*4*4 = 144 - 144 = 0, D=0, один корень
б) D = 9 - 4*2*(-1) = 9 + 8 = 17, 17 > 0, два корня

2. а) x² -14x + 33 = 0
D = (-14)² - 4*1*33 = 64
x1 = 14 + 8 / 2 = 11
x2 = 14 - 8 / 2 = 3

б) -3x² + 10x - 3 = 0
D = 100 - 4 * (-3) * (-3) = 64
x1 = -10 + 8 / -6 = -2 / -6 = 1/3
x2 = -10 - 8 / -6 = -18 / -6 = 3

в) это биквадратное уравнение, поэтому решается введением новой переменной
пусть x² = t, тогда t² - 10t + 9 = 0
D = 100 - 4*9*1 = 64
t1 = 10 + 8 / 2 = 9
t2 = 10 - 8 / 2 = 1
то есть 1) x² = 1      2) x² = 9
x1 = 1                          x1 = 3
x2 = -1                         x2 = -3
0 0
Отвечает Заболотникова Таня.
Смотри на фото:)
Надеюсь помогла:)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Определение числа корней уравнения

Для начала определим число корней уравнения, используя дискриминант и другие методы.

a) 9x^2 + 12x + 4 = 0

Для уравнения вида ax^2 + bx + c = 0, дискриминант D вычисляется по формуле D = b^2 - 4ac.

Дискриминант D > 0: уравнение имеет два различных корня. Дискриминант D = 0: уравнение имеет один корень. Дискриминант D < 0: уравнение не имеет вещественных корней.

Для уравнения 9x^2 + 12x + 4 = 0: a = 9, b = 12, c = 4 D = b^2 - 4ac D = 12^2 - 4*9*4 D = 144 - 144 D = 0

Таким образом, уравнение имеет один корень.

б) 2x^2 + 3x - 1 = 0

Для уравнения 2x^2 + 3x - 1 = 0: a = 2, b = 3, c = -1 D = b^2 - 4ac D = 3^2 - 4*2*(-1) D = 9 + 8 D = 17

Таким образом, уравнение имеет два различных корня.

Решение уравнений

Теперь решим уравнения, используя известные методы, такие как квадратное уравнение и другие подходы.

a) x^2 - 14x + 33 = 0

Для решения квадратного уравнения вида ax^2 + bx + c = 0, можно использовать метод завершения квадрата или квадратного корня.

Для уравнения x^2 - 14x + 33 = 0: 1. Найдем дискриминант D = b^2 - 4ac 2. Рассмотрим три случая: D > 0, D = 0, D < 0 3. Применим формулу корней квадратного уравнения x = (-b ± √D) / (2a)

б) -3x^2 + 10x - 3 = 0

Для уравнения -3x^2 + 10x - 3 = 0: 1. Найдем дискриминант D = b^2 - 4ac 2. Рассмотрим три случая: D > 0, D = 0, D < 0 3. Применим формулу корней квадратного уравнения x = (-b ± √D) / (2a)

в) x^4 - 10x^2 + 9 = 0

Для уравнения x^4 - 10x^2 + 9 = 0: 1. Рассмотрим данное уравнение как квадратное уравнение относительно x^2. 2. Решим это уравнение, заменив x^2 на переменную y, чтобы получить квадратное уравнение относительно y. 3. Найдем корни уравнения относительно y, затем найдем корни относительно x.

После выполнения этих шагов, можно найти корни для каждого уравнения. Если вам нужно более подробное решение для каждого уравнения, пожалуйста, дайте знать, и я могу предоставить подробные шаги для решения каждого из них.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос