
Решите пж примеры : А)КОРЕНЬ В СТЕПЕНИ 3 ПОД КОРНЕМ 2X+3=-3 Б)КОРЕНЬ ПОДКОРНЕМ 2X+3=-3 в)корень
подкорнем 2x+3=3 г)корень подконем 4x+3=корень под корнем x квадрате + x - 1 д)корень подкорнем 2x+3=-3-2x спасибо заранее)

Ответы на вопрос




Solution for Equation A: √(2x+3)^3 = -3
To solve the equation √(2x+3)^3 = -3, we need to isolate the variable x.
1. Start by cubing both sides of the equation to eliminate the square root: (√(2x+3))^3 = (-3)^3 (2x+3)^3 = -27
2. Take the cube root of both sides to remove the exponent: 2x+3 = -3∛27 2x+3 = -3 * (-3) 2x+3 = 9
3. Subtract 3 from both sides to isolate the variable x: 2x = 9 - 3 2x = 6
4. Divide both sides by 2 to solve for x: x = 6/2 x = 3
Therefore, the solution for Equation A is x = 3.
Solution for Equation B: √(2x+3) = -3
To solve the equation √(2x+3) = -3, we need to isolate the variable x.
1. Start by squaring both sides of the equation to eliminate the square root: (√(2x+3))^2 = (-3)^2 2x+3 = 9
2. Subtract 3 from both sides to isolate the variable x: 2x = 9 - 3 2x = 6
3. Divide both sides by 2 to solve for x: x = 6/2 x = 3
Therefore, the solution for Equation B is x = 3.
Solution for Equation C: √(2x+3) = 3
To solve the equation √(2x+3) = 3, we need to isolate the variable x.
1. Start by squaring both sides of the equation to eliminate the square root: (√(2x+3))^2 = 3^2 2x+3 = 9
2. Subtract 3 from both sides to isolate the variable x: 2x = 9 - 3 2x = 6
3. Divide both sides by 2 to solve for x: x = 6/2 x = 3
Therefore, the solution for Equation C is x = 3.
Solution for Equation D: √(4x+3) = √(x^2 + x - 1)
To solve the equation √(4x+3) = √(x^2 + x - 1), we need to isolate the variable x.
1. Square both sides of the equation to eliminate the square roots: (√(4x+3))^2 = (√(x^2 + x - 1))^2 4x+3 = x^2 + x - 1
2. Rearrange the equation to form a quadratic equation: x^2 + x - 1 - (4x + 3) = 0 x^2 - 3x - 4 = 0
3. Solve the quadratic equation by factoring or using the quadratic formula. In this case, we'll use factoring: (x - 4)(x + 1) = 0
Setting each factor equal to zero: x - 4 = 0 or x + 1 = 0
Solving for x: x = 4 or x = -1
Therefore, the solutions for Equation D are x = 4 and x = -1.
Solution for Equation E: √(2x+3) = -3 - 2x
To solve the equation √(2x+3) = -3 - 2x, we need to isolate the variable x.
1. Square both sides of the equation to eliminate the square root: (√(2x+3))^2 = (-3 - 2x)^2 2x+3 = 9 + 12x + 4x^2
2. Rearrange the equation to form a quadratic equation: 4x^2 + 12x + 9 - 2x - 3 = 0 4x^2 + 10x + 6 = 0
3. Solve the quadratic equation by factoring or using the quadratic formula. In this case, we'll use the quadratic formula: x = (-b ± √(b^2 - 4ac)) / (2a)
For the equation 4x^2 + 10x + 6 = 0, the coefficients are: a = 4, b = 10, c = 6
Plugging these values into the quadratic formula: x = (-10 ± √(10^2 - 4 * 4 * 6)) / (2 * 4) x = (-10 ± √(100 - 96)) / 8 x = (-10 ± √4) / 8 x = (-10 ± 2) / 8
Simplifying the solutions: x = (-10 + 2) / 8 or x = (-10 - 2) / 8 x = -8 / 8 or x = -12 / 8 x = -1 or x = -3/2
Therefore, the solutions for Equation E are x = -1 and x = -3/2.
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili