
Вероятность того, что батарейка бракованная, равна 0,04. Покупатель в магазине выбирает случайную
упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными

Ответы на вопрос




Calculation of the Probability
To find the probability that both batteries are in working condition, we can use the multiplication rule for independent events. The probability of two independent events occurring is equal to the product of their individual probabilities.
Given that the probability of a battery being defective is 0.04, the probability of a battery being in working condition is 1 - 0.04 = 0.96.
Let's denote the event of a battery being in working condition as A. The probability of event A occurring is 0.96.
Since the customer chooses two batteries randomly from a package, we can assume that the selection of each battery is independent.
Using the multiplication rule, the probability that both batteries are in working condition (event A) can be calculated as follows:
P(A and A) = P(A) * P(A) = 0.96 * 0.96 = 0.9216
Therefore, the probability that both batteries will be in working condition is 0.9216, or approximately 92.16%.
Please note that the above calculation assumes that the probability of a battery being defective is independent of the other battery in the package. If there are any dependencies or correlations between the batteries, the calculation may differ.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili