Вопрос задан 02.05.2019 в 10:50. Предмет Алгебра. Спрашивает Дмитриенко Софья.

X+y=7 x-3y=-5 Решить методом алгебраического сложения

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Алиев Марсель.
*система* х+у=7 х-3у=-5 -2у=-2 у=1 *2систеиа* у=1 х+1=7 *3 система* у=1 х=6 Ответ(6;1)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения системы уравнений "x + y = 7" и "x - 3y = -5" методом алгебраического сложения, мы можем преобразовать одно из уравнений так, чтобы коэффициент при одной из переменных стал одинаковым, после чего сложить или вычесть уравнения друг из друга для устранения одной из переменных.

Преобразование уравнений

Давайте начнем с преобразования уравнений для устранения одной из переменных. Для этого мы можем умножить первое уравнение на 3, чтобы получить одинаковый коэффициент у переменной y в обоих уравнениях: 1) Умножаем первое уравнение на 3: 3(x + y) = 3(7) => 3x + 3y = 21

Сложение уравнений

Теперь мы можем сложить это уравнение с вторым исходным уравнением: 2) 3x + 3y + (x - 3y) = 21 - 5 4x = 16 x = 4

Нахождение y

Теперь, когда мы знаем значение x

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос