
Вопрос задан 01.05.2019 в 22:45.
Предмет Алгебра.
Спрашивает Полатбек Али.
Помогите пожалуйста с математикой LOG2(3X-1)>=LOG2(3-2X) Логарифм 3Х-1 по основанию 2 больше или
равно логарифм 3-2Х по основанию 2

Ответы на вопрос

Отвечает Залуніна Юлія.
Ответ:



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для начала решим неравенство логарифмов. Обратите внимание, что логарифмы с одинаковым основанием можно сравнивать, используя следующее свойство:
Если \( \log_a{b} \geq \log_a{c} \), то \( b \geq c \).
Теперь давайте решим заданное неравенство.
Решение неравенства логарифмов
Имеем неравенство: \( \log_2(3x-1) \geq \log_2(3-2x) \).
Согласно свойству логарифмов, если логарифмы с одинаковым основанием сравниваются, то аргументы логарифмов сравниваются:
\[ 3x - 1 \geq 3 - 2x \]
Теперь решим это уравнение:
\[ 3x + 2x \geq 3 + 1 \] \[ 5x \geq 4 \] \[ x \geq \frac{4}{5} \]
Таким образом, неравенство \( \log_2(3x-1) \geq \log_2(3-2x) \) выполняется, если \( x \geq \frac{4}{5} \).
Ответ
Для неравенства \( \log_2(3x-1) \geq \log_2(3-2x) \), решение будет \( x \geq \frac{4}{5} \).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili