
Мотоциклист и велосипедист одновременно начинают равноускоренное движение из состояния
покоя.Ускорение мотоциклиста в 3 раза больше, чем ускорение велосипедиста.Во сколько раз больше времени понадобится велосипедисту, чтобы достичь скорости 50 км/ч?

Ответы на вопрос

v = 3a·tм ⇒ tм =
tв/tм =



Problem Analysis
We are given that a motorcyclist and a cyclist start moving from rest with the same constant acceleration. The acceleration of the motorcyclist is three times greater than the acceleration of the cyclist. We need to determine the ratio of the time it takes for the cyclist to reach a speed of 50 km/h compared to the motorcyclist.Solution
Let's assume the acceleration of the cyclist is a and the acceleration of the motorcyclist is 3a. We need to find the ratio of the time it takes for the cyclist to reach a speed of 50 km/h compared to the motorcyclist.To solve this problem, we can use the equations of motion. The equation that relates acceleration, initial velocity, final velocity, and time is:
v = u + at
where: - v is the final velocity - u is the initial velocity - a is the acceleration - t is the time
For the cyclist: - Initial velocity, u_cyclist = 0 (since the cyclist starts from rest) - Final velocity, v_cyclist = 50 km/h = 50 * (1000/3600) m/s (converting km/h to m/s) - Acceleration, a_cyclist = a
For the motorcyclist: - Initial velocity, u_motorcyclist = 0 (since the motorcyclist starts from rest) - Final velocity, v_motorcyclist = 50 km/h = 50 * (1000/3600) m/s (converting km/h to m/s) - Acceleration, a_motorcyclist = 3a
We can rearrange the equation to solve for time:
t = (v - u) / a
For the cyclist: t_cyclist = (v_cyclist - u_cyclist) / a_cyclist
For the motorcyclist: t_motorcyclist = (v_motorcyclist - u_motorcyclist) / a_motorcyclist
To find the ratio of the time it takes for the cyclist to reach a speed of 50 km/h compared to the motorcyclist, we can divide the two equations:
ratio = t_cyclist / t_motorcyclist
Let's calculate the values and find the ratio.
Calculation
Given: - Final velocity, v_cyclist = 50 * (1000/3600) m/s - Final velocity, v_motorcyclist = 50 * (1000/3600) m/s - Acceleration, a_motorcyclist = 3aUsing the equations: t_cyclist = (v_cyclist - u_cyclist) / a_cyclist t_motorcyclist = (v_motorcyclist - u_motorcyclist) / a_motorcyclist
Substituting the values: t_cyclist = (50 * (1000/3600) - 0) / a t_motorcyclist = (50 * (1000/3600) - 0) / (3a)
Simplifying: t_cyclist = (50 * (1000/3600)) / a t_motorcyclist = (50 * (1000/3600)) / (3a)
Calculating the ratio: ratio = t_cyclist / t_motorcyclist = [(50 * (1000/3600)) / a] / [(50 * (1000/3600)) / (3a)]
Simplifying: ratio = 3
Answer
The ratio of the time it takes for the cyclist to reach a speed of 50 km/h compared to the motorcyclist is 3.Explanation
The cyclist takes three times longer to reach a speed of 50 km/h compared to the motorcyclist. This is because the motorcyclist has three times the acceleration of the cyclist, allowing them to reach the desired speed in a shorter amount of time.

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili