
Запишите периодические дроби в виде обыкновенных дробей: 0.(3); 0.(7); 0.1(2); 1.12(3); 7.5(4);
0.(12); 1.0(12); 8.7(21)

Ответы на вопрос




2)0,7=7/9
3)0,1(2)=11/90
4)1.12(3)=1, 111/900
5)7,5(4)=7, 50/90
6)0,(12)=12/99
7)1,0(12)=1, 12/90
8)8,7(21)=8, 714/900



Converting Periodic Decimals to Fractions
To convert periodic decimals to fractions, we need to identify the repeating pattern and express it as a fraction. Let's convert the given periodic decimals into fractions:
1. 0.(3): The number 0.(3) represents a repeating decimal where the digit 3 repeats indefinitely. To convert it to a fraction, we can use the following method: - Let x = 0.(3) - Multiply both sides of the equation by 10 to shift the decimal point: 10x = 3.(3) - Subtract the original equation from the shifted equation: 10x - x = 3.(3) - 0.(3) - Simplify: 9x = 3 - Divide both sides by 9: x = 3/9 = 1/3
Therefore, 0.(3) is equal to 1/3.
2. 0.(7): The number 0.(7) represents a repeating decimal where the digit 7 repeats indefinitely. To convert it to a fraction, we can use the same method as above: - Let x = 0.(7) - Multiply both sides of the equation by 10 to shift the decimal point: 10x = 7.(7) - Subtract the original equation from the shifted equation: 10x - x = 7.(7) - 0.(7) - Simplify: 9x = 7 - Divide both sides by 9: x = 7/9
Therefore, 0.(7) is equal to 7/9.
3. 0.1(2): The number 0.1(2) represents a repeating decimal where the digit 2 repeats indefinitely. To convert it to a fraction, we can use a similar method: - Let x = 0.1(2) - Multiply both sides of the equation by 10 to shift the decimal point: 10x = 1.(2) - Subtract the original equation from the shifted equation: 10x - x = 1.(2) - 0.1(2) - Simplify: 9x = 1 - Divide both sides by 9: x = 1/9
Therefore, 0.1(2) is equal to 1/9.
4. 1.12(3): The number 1.12(3) represents a repeating decimal where the digits 1 and 3 repeat indefinitely. To convert it to a fraction, we can use a similar method: - Let x = 1.12(3) - Multiply both sides of the equation by 100 to shift the decimal point: 100x = 112.(3) - Subtract the original equation from the shifted equation: 100x - x = 112.(3) - 1.12(3) - Simplify: 99x = 111 - Divide both sides by 99: x = 111/99
Therefore, 1.12(3) is equal to 37/33.
5. 7.5(4): The number 7.5(4) represents a repeating decimal where the digit 4 repeats indefinitely. To convert it to a fraction, we can use a similar method: - Let x = 7.5(4) - Multiply both sides of the equation by 10 to shift the decimal point: 10x = 75.(4) - Subtract the original equation from the shifted equation: 10x - x = 75.(4) - 7.5(4) - Simplify: 9x = 68 - Divide both sides by 9: x = 68/9
Therefore, 7.5(4) is equal to 68/9.
6. 0.(12): The number 0.(12) represents a repeating decimal where the digits 1 and 2 repeat indefinitely. To convert it to a fraction, we can use a similar method: - Let x = 0.(12) - Multiply both sides of the equation by 100 to shift the decimal point: 100x = 12.(12) - Subtract the original equation from the shifted equation: 100x - x = 12.(12) - 0.(12) - Simplify: 99x = 12 - Divide both sides by 99: x = 12/99
Therefore, 0.(12) is equal to 4/33.
7. 1.0(12): The number 1.0(12) represents a repeating decimal where the digits 1 and 2 repeat indefinitely. To convert it to a fraction, we can use a similar method: - Let x = 1.0(12) - Multiply both sides of the equation by 10 to shift the decimal point: 10x = 10.(12) - Subtract the original equation from the shifted equation: 10x - x = 10.(12) - 1.0(12) - Simplify: 9x = 9 - Divide both sides by 9: x = 1
Therefore, 1.0(12) is equal to 1.
8. 8.7(21): The number 8.7(21) represents a repeating decimal where the digits 2 and 1 repeat indefinitely. To convert it to a fraction, we can use a similar method: - Let x = 8.7(21) - Multiply both sides of the equation by 100 to shift the decimal point: 100x = 871.(21) - Subtract the original equation from the shifted equation: 100x - x = 871.(21) - 8.7(21) - Simplify: 99x = 862 - Divide both sides by 99: x = 862/99
Therefore, 8.7(21) is equal to 862/99.
Please let me know if you have any further questions!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili