Вопрос задан 28.04.2019 в 02:09. Предмет Алгебра. Спрашивает Попов Кирилл.

Запишите периодические дроби в виде обыкновенных дробей: 0.(3); 0.(7); 0.1(2); 1.12(3); 7.5(4);

0.(12); 1.0(12); 8.7(21)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гавриленко Даша.
Решение на фото............
0 0
Отвечает Лучнікова Мар'яна.
1)0(3)=3/9
2)0,7=7/9
3)0,1(2)=11/90
4)1.12(3)=1, 111/900
5)7,5(4)=7, 50/90
6)0,(12)=12/99
7)1,0(12)=1, 12/90
8)8,7(21)=8, 714/900
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Converting Periodic Decimals to Fractions

To convert periodic decimals to fractions, we need to identify the repeating pattern and express it as a fraction. Let's convert the given periodic decimals into fractions:

1. 0.(3): The number 0.(3) represents a repeating decimal where the digit 3 repeats indefinitely. To convert it to a fraction, we can use the following method: - Let x = 0.(3) - Multiply both sides of the equation by 10 to shift the decimal point: 10x = 3.(3) - Subtract the original equation from the shifted equation: 10x - x = 3.(3) - 0.(3) - Simplify: 9x = 3 - Divide both sides by 9: x = 3/9 = 1/3

Therefore, 0.(3) is equal to 1/3.

2. 0.(7): The number 0.(7) represents a repeating decimal where the digit 7 repeats indefinitely. To convert it to a fraction, we can use the same method as above: - Let x = 0.(7) - Multiply both sides of the equation by 10 to shift the decimal point: 10x = 7.(7) - Subtract the original equation from the shifted equation: 10x - x = 7.(7) - 0.(7) - Simplify: 9x = 7 - Divide both sides by 9: x = 7/9

Therefore, 0.(7) is equal to 7/9.

3. 0.1(2): The number 0.1(2) represents a repeating decimal where the digit 2 repeats indefinitely. To convert it to a fraction, we can use a similar method: - Let x = 0.1(2) - Multiply both sides of the equation by 10 to shift the decimal point: 10x = 1.(2) - Subtract the original equation from the shifted equation: 10x - x = 1.(2) - 0.1(2) - Simplify: 9x = 1 - Divide both sides by 9: x = 1/9

Therefore, 0.1(2) is equal to 1/9.

4. 1.12(3): The number 1.12(3) represents a repeating decimal where the digits 1 and 3 repeat indefinitely. To convert it to a fraction, we can use a similar method: - Let x = 1.12(3) - Multiply both sides of the equation by 100 to shift the decimal point: 100x = 112.(3) - Subtract the original equation from the shifted equation: 100x - x = 112.(3) - 1.12(3) - Simplify: 99x = 111 - Divide both sides by 99: x = 111/99

Therefore, 1.12(3) is equal to 37/33.

5. 7.5(4): The number 7.5(4) represents a repeating decimal where the digit 4 repeats indefinitely. To convert it to a fraction, we can use a similar method: - Let x = 7.5(4) - Multiply both sides of the equation by 10 to shift the decimal point: 10x = 75.(4) - Subtract the original equation from the shifted equation: 10x - x = 75.(4) - 7.5(4) - Simplify: 9x = 68 - Divide both sides by 9: x = 68/9

Therefore, 7.5(4) is equal to 68/9.

6. 0.(12): The number 0.(12) represents a repeating decimal where the digits 1 and 2 repeat indefinitely. To convert it to a fraction, we can use a similar method: - Let x = 0.(12) - Multiply both sides of the equation by 100 to shift the decimal point: 100x = 12.(12) - Subtract the original equation from the shifted equation: 100x - x = 12.(12) - 0.(12) - Simplify: 99x = 12 - Divide both sides by 99: x = 12/99

Therefore, 0.(12) is equal to 4/33.

7. 1.0(12): The number 1.0(12) represents a repeating decimal where the digits 1 and 2 repeat indefinitely. To convert it to a fraction, we can use a similar method: - Let x = 1.0(12) - Multiply both sides of the equation by 10 to shift the decimal point: 10x = 10.(12) - Subtract the original equation from the shifted equation: 10x - x = 10.(12) - 1.0(12) - Simplify: 9x = 9 - Divide both sides by 9: x = 1

Therefore, 1.0(12) is equal to 1.

8. 8.7(21): The number 8.7(21) represents a repeating decimal where the digits 2 and 1 repeat indefinitely. To convert it to a fraction, we can use a similar method: - Let x = 8.7(21) - Multiply both sides of the equation by 100 to shift the decimal point: 100x = 871.(21) - Subtract the original equation from the shifted equation: 100x - x = 871.(21) - 8.7(21) - Simplify: 99x = 862 - Divide both sides by 99: x = 862/99

Therefore, 8.7(21) is equal to 862/99.

Please let me know if you have any further questions!

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос