
Вопрос задан 01.04.2019 в 17:06.
Предмет Алгебра.
Спрашивает Жанаев Диас.
В параллелограмме ABCD на диагональ AC опущен перпендикуляр BO. Найдите площадь параллелограмма,
если AO=8, OC=6, и BO=4

Ответы на вопрос

Отвечает Соболев Даня.
AC=AO+OC=6+8=14
BO = 4
S=BO*AC
S=14*4=56
Ответ: 56
BO = 4
S=BO*AC
S=14*4=56
Ответ: 56



Отвечает Плисецкая Анна.
Диагональ АС делит параллелограмм на два равных треугольника: АВС и АДС ( АД=ВС, АВ=СД, АС – общая: третий признак равенства треугольников. По трем сторонам). Рассмотрим треугольник АВС: АС=АО+ОС=8+6=14 Найдем площадь треугольника АВС: Формула площади треугольника: S=1/2*a*h (где a – основание треугольника, h – высота треугольника).Sabc=1/2*АС*ВО=1/2*14*4=28 кв. ед.Так как треугольники АВС и АДС равны, то площадь параллелограмма АВСД будет равна: Sabcд=Sabc*2=28*2=56 кв. ед.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili