 
Построить график функции и описать основные свойства. y=x^2-3x-4
 0
        0
         0
        0
    Ответы на вопрос
 
         0
                    0
                     0
                    0
                 
            Graph of the Function y = x^2 - 3x - 4
To graph the function y = x^2 - 3x - 4, we can plot several points and connect them to form a curve. Let's find some key points on the graph:
1. When x = 0: - y = (0)^2 - 3(0) - 4 = -4 - So, we have the point (0, -4).
2. When x = 2: - y = (2)^2 - 3(2) - 4 = -2 - So, we have the point (2, -2).
3. When x = 4: - y = (4)^2 - 3(4) - 4 = 0 - So, we have the point (4, 0).
Now, let's plot these points on a graph:
| x | y | |---|---| | 0 | -4| | 2 | -2| | 4 | 0|
We can connect these points to form a curve. The graph of the function y = x^2 - 3x - 4 looks like this:

Properties of the Function y = x^2 - 3x - 4
1. Vertex: The vertex of a quadratic function in the form y = ax^2 + bx + c is given by the formula x = -b/2a. In this case, a = 1, b = -3, and c = -4. Plugging these values into the formula, we get x = -(-3)/(2*1) = 3/2. Therefore, the vertex of the function y = x^2 - 3x - 4 is (3/2, -25/4).
2. Axis of Symmetry: The axis of symmetry is a vertical line that passes through the vertex of the parabola. For the function y = x^2 - 3x - 4, the axis of symmetry is x = 3/2.
3. Intercepts: To find the x-intercepts, we set y = 0 and solve for x. For the function y = x^2 - 3x - 4, we can factor the quadratic equation or use the quadratic formula to find the x-intercepts. The x-intercepts are (-1, 0) and (4, 0).
4. Minimum/Maximum: Since the coefficient of x^2 is positive (a = 1), the parabola opens upward, and the vertex represents the minimum point on the graph. Therefore, the function y = x^2 - 3x - 4 has a minimum value at the vertex (3/2, -25/4).
5. Symmetry: The function y = x^2 - 3x - 4 is symmetric with respect to the axis of symmetry x = 3/2. This means that if we reflect any point on the graph across the axis of symmetry, we will get another point on the graph.
6. Increasing/Decreasing Intervals: The function y = x^2 - 3x - 4 is increasing to the left of the vertex (3/2, -25/4) and decreasing to the right of the vertex. The vertex represents the minimum point on the graph.
These are the main properties of the function y = x^2 - 3x - 4.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			