
1/x+1<1/x-1 решение нужно срочно помогите пожалуйста


Ответы на вопрос

1<-1
x ∈ ∅



Solving the Inequality 1/x + 1 < 1/x - 1
To solve the inequality 1/x + 1 < 1/x - 1, we can start by finding the common denominator and then simplifying the expression.
First, let's find the common denominator for the fractions. The common denominator for 1/x and 1 is x. Therefore, we can rewrite the inequality as:
x/x + 1/x < x/x - 1
Simplifying further, we get:
1 + 1/x < 1 - 1/x
Now, let's add -1 to both sides of the inequality:
1 + 1/x - 1 < 1 - 1/x - 1
This simplifies to:
1/x < -1/x
Now, let's multiply both sides by x to get rid of the fractions:
x * (1/x) < x * (-1/x)
This simplifies to:
1 < -1
However, it's important to note that there is no solution to this inequality. This is because the left-hand side of the inequality is always positive (since x is in the denominator), and the right-hand side is always negative. Therefore, there are no values of x that satisfy the given inequality.
This means that the original inequality 1/x + 1 < 1/x - 1 has no solution.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili