
Решить неравенство: 4х^2+16х≥0 , прошу вас помогите


Ответы на вопрос

4x(x + 4) ≥ 0
x (x + 4) ≥ 0
+ - +
________________________
- 4 0
x ∈ ( - ∞ ; - 4]∪[0 ; + ∞)



Solving the Inequality 4x^2 + 16x ≥ 0
To solve the inequality 4x^2 + 16x ≥ 0, we can factor out the common term 4x, which gives us:
4x(x + 4) ≥ 0
Now, we can find the critical points by setting each factor equal to zero and solving for x:
1. 4x ≥ 0 => x ≥ 0 2. x + 4 ≥ 0 => x ≥ -4
So, the critical points are x = 0 and x = -4.
Next, we can use these critical points to test the intervals between them and determine the solution to the inequality.
- For x < -4: - If x < -4, both 4x and (x + 4) are negative, so their product is positive. Therefore, this interval satisfies the inequality.
- For -4 < x < 0: - If -4 < x < 0, 4x is negative and (x + 4) is positive, so their product is negative. Therefore, this interval does not satisfy the inequality.
- For x > 0: - If x > 0, both 4x and (x + 4) are positive, so their product is positive. Therefore, this interval satisfies the inequality.
Conclusion
The solution to the inequality 4x^2 + 16x ≥ 0 is x ≤ -4 or x ≥ 0.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili