Вопрос задан 20.02.2019 в 10:10. Предмет Алгебра. Спрашивает Батурова Валерия.

андрей наугад называет число не превышающее двухсот. Какова вероятность того, что оно делится на 3

но не делится на 2
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Луенко Валерия.

у 200 толко 66 делятся на 3 и половина на 3 и на 2

33/200=16,5%выпадения  и на 2 и на 3

 

0 0
Отвечает Иванова Екатерина.
В 200 имеется 66 чисел, которые делятся на 3, из них половина четные, следовательно делятся на 2

66/2=33 - положительных исходов

33/200= 165/1000 = 0.165= 16.5%
наверное так
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculating the Probability

To calculate the probability of a randomly chosen number between 1 and 200 being divisible by 3 but not divisible by 2, we need to determine the count of numbers that satisfy this condition and divide it by the total count of numbers between 1 and 200.

Count of Numbers Divisible by 3

To find the count of numbers divisible by 3, we can divide the range [1, 200] by 3 and round down the result. This is because every third number in the range will be divisible by 3.

The count of numbers divisible by 3 is given by:

Count of Numbers Divisible by 3 = floor(200 / 3)

Using this formula, we find that the count of numbers divisible by 3 is 66.

Count of Numbers Divisible by 2

To find the count of numbers divisible by 2, we can divide the range [1, 200] by 2 and round down the result. This is because every second number in the range will be divisible by 2.

The count of numbers divisible by 2 is given by:

Count of Numbers Divisible by 2 = floor(200 / 2)

Using this formula, we find that the count of numbers divisible by 2 is 100.

Count of Numbers Divisible by Both 2 and 3

To find the count of numbers divisible by both 2 and 3, we can divide the range [1, 200] by the least common multiple (LCM) of 2 and 3, which is 6. This is because every sixth number in the range will be divisible by both 2 and 3.

The count of numbers divisible by both 2 and 3 is given by:

Count of Numbers Divisible by Both 2 and 3 = floor(200 / 6)

Using this formula, we find that the count of numbers divisible by both 2 and 3 is 33.

Count of Numbers Divisible by 3 but not by 2

To find the count of numbers divisible by 3 but not by 2, we need to subtract the count of numbers divisible by both 2 and 3 from the count of numbers divisible by 3.

Count of Numbers Divisible by 3 but not by 2 = Count of Numbers Divisible by 3 - Count of Numbers Divisible by Both 2 and 3

Using the counts we calculated earlier, we find that the count of numbers divisible by 3 but not by 2 is:

Count of Numbers Divisible by 3 but not by 2 = 66 - 33 = 33

Probability Calculation

Finally, to calculate the probability, we divide the count of numbers divisible by 3 but not by 2 by the total count of numbers between 1 and 200.

Probability = Count of Numbers Divisible by 3 but not by 2 / Total Count of Numbers between 1 and 200

Using the counts we calculated earlier, we find that the probability is:

Probability = 33 / 200

Therefore, the probability that a randomly chosen number between 1 and 200 is divisible by 3 but not by 2 is 33/200.

0 0

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос