Вопрос задан 19.02.2019 в 17:09. Предмет Алгебра. Спрашивает Kozar Lilya.

Высота усечённого конуса равна 2корня из 3 диагональ осевого сечения конуса образует с плоскостью

основания угол в 30 градусов и перпендикулярна образуещей найдите площать осевого сечения конуса. и рисунок нарисуйте есил это возможно
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Проскурякова Полина.
ВОТ  ДЕРЖИ ЕСЛИ ЧТО- ТО НЕ ПОНЯТНО ПИШИ!!!!
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Calculation of the Diagonal of the Axis Section of the Cone

To find the area of the axis section of the cone, we first need to calculate the diagonal of the axis section.

Given: - Height of the truncated cone = 2√3 - The angle between the diagonal of the axis section and the plane of the base is 30 degrees

Let's denote the diagonal of the axis section as 'd' and the radius of the base of the cone as 'r'.

To find the diagonal 'd', we can use the formula for the diagonal of a right-angled triangle:

d = √(h^2 + r^2)

where 'h' is the height of the truncated cone and 'r' is the radius of the base.

Substituting the given values, we have:

d = √((2√3)^2 + r^2) = √(12 + r^2)

Now, we need to find the value of 'r' in terms of 'd' using trigonometry.

The angle between the diagonal of the axis section and the plane of the base is 30 degrees. This means that the triangle formed by the diagonal, the radius, and the height of the cone is a right-angled triangle with one angle measuring 30 degrees.

In a right-angled triangle, the tangent of an angle is defined as the ratio of the length of the side opposite the angle to the length of the side adjacent to the angle.

In this case, the tangent of the angle 30 degrees is given by:

tan(30) = (r / h)

Substituting the values, we have:

tan(30) = (r / 2√3)

Simplifying, we get:

r = 2√3 * tan(30) = √3

Now, we can substitute the value of 'r' into the equation for 'd':

d = √(12 + (√3)^2) = √(12 + 3) = √15

Therefore, the diagonal of the axis section of the cone is √15.

Calculation of the Area of the Axis Section of the Cone

To find the area of the axis section of the cone, we can use the formula for the area of a circle:

A = πr^2

where 'r' is the radius of the base of the cone.

Substituting the value of 'r' as √3, we have:

A = π(√3)^2 = 3π

Therefore, the area of the axis section of the cone is 3π.

Diagram of the Axis Section of the Cone

Unfortunately, as a text-based AI, I am unable to draw diagrams. However, you can visualize the axis section of the cone as a circle with a radius of √3.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос