Вопрос задан 19.02.2019 в 16:37. Предмет Алгебра. Спрашивает Вялов Денис.

УРААНЕНИЕ 4/Х=-а имеет отриуательный корень

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лис Влад.
4/x = -a ;
ОДЗ :x ≠0      т.е.  x∈(-∞;0) U(0;∞) .
x= - 4/a ;
- 4/a < 0 ; ⇒ a>0 .
a∈(0 ;∞) .
**********************
* * *  x  < 0⇒4/x  < 0 , значит  и  -а < 0 |-a=4/x || , следовательно   a >0 * * *
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solution for the Equation 4/x = -a with a Negative Root

To solve the equation 4/x = -a for x, we can rearrange the equation to isolate x. The equation can be rewritten as x = 4/(-a). However, it's important to note that the equation 4/x = -a has a negative root when -a is positive. Let's break down the solution step by step.

Step 1: Rearranging the Equation We start by rearranging the equation 4/x = -a to solve for x: x = 4/(-a)

Step 2: Understanding the Negative Root It's important to note that the equation has a negative root when -a is positive. This means that if -a is a positive value, the solution for x will be negative.

Step 3: Conclusion In conclusion, the equation 4/x = -a has a negative root when -a is positive, and the solution for x is x = 4/(-a).

This solution provides a clear understanding of how to approach the given equation and the conditions under which it yields a negative root.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос