
уравнение решить, методом бернулли) y'=y/x+1/y спасибо)


Ответы на вопрос

решение в файле. Уравнение приведено к виду, которое решается методом Бернулли



Solving the Differential Equation using the Bernoulli Method
To solve the differential equation y' = y/x + 1/y using the Bernoulli method, we can follow these steps:
Step 1: Identify the form of the equation The given equation is in the form y' = P(x)y + Q(x)y^n, where n ≠ 1. In this case, P(x) = 1/x and Q(x) = 1.
Step 2: Make the substitution Let's make the substitution v = y^(1-n). In this case, n = -1, so v = y^2.
Step 3: Differentiate both sides of the equation Differentiating v = y^2 with respect to x gives us dv/dx = 2yy'.
Step 4: Substitute the expressions into the differential equation Substituting v = y^2 and dv/dx = 2yy' into the original differential equation y' = y/x + 1/y, we get 2yy' = y^2/x + 1/y.
Step 5: Simplify the equation Multiplying both sides of the equation by x gives us 2xyy' = y^2 + x/y.
Step 6: Solve the resulting linear differential equation The resulting equation 2xyy' = y^2 + x/y is a linear differential equation. We can solve it using standard methods.
Unfortunately, I couldn't find a specific solution to this equation using the Bernoulli method in the available search results. It's possible that the equation may not have an elementary solution or that a different method may be more appropriate for solving it.
If you have any further questions or need clarification, please let me know!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili