Вопрос задан 17.02.2019 в 19:02. Предмет Алгебра. Спрашивает Уразаев Никита.

ПОМОГИТЕ ПОЖАЛУЙСТА!!!! два экскаватора работая вмести, вырыли котлован за 7 часов 30 мин. За какое

время может вырыть котлован каждые экскаватор, работая отдельно, если одному из них нужно на это на 8 часов больше, чем другому? ПОПОМГИТЕ ПЛИЗЗЗЗP.S. решать через сиситему
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Столетний Игорь.
Решение представлено ниже в приложении

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that two excavators working together can dig a pit in 7 hours and 30 minutes. We need to find the time it takes for each excavator to dig the pit individually, given that one of them takes 8 hours longer than the other.

Solution

Let's assume that one excavator takes x hours to dig the pit individually. Since the other excavator takes 8 hours longer, it will take (x + 8) hours to dig the pit individually.

To find the time it takes for each excavator to dig the pit individually, we can set up the following equation based on their combined work rate:

1/(x) + 1/(x + 8) = 1/(7 hours and 30 minutes)

Now, let's solve this equation to find the value of x.

Calculation

To solve the equation, we can convert the time of 7 hours and 30 minutes to hours. 30 minutes is equal to 0.5 hours.

1/(x) + 1/(x + 8) = 1/(7.5 hours)

To simplify the equation, we can multiply all terms by x(x + 8)(7.5) to eliminate the denominators:

7.5(x + 8) + 7.5x = x(x + 8)

Simplifying further:

7.5x + 60 + 7.5x = x^2 + 8x

15x + 60 = x^2 + 8x

Rearranging the equation:

x^2 - 7x - 60 = 0

Now, we can solve this quadratic equation to find the value of x.

Using the quadratic formula:

x = (-b ± √(b^2 - 4ac)) / (2a)

For our equation, a = 1, b = -7, and c = -60.

Substituting the values into the formula:

x = (-(-7) ± √((-7)^2 - 4(1)(-60))) / (2(1))

Simplifying:

x = (7 ± √(49 + 240)) / 2

x = (7 ± √289) / 2

x = (7 ± 17) / 2

We have two possible solutions:

1. x = (7 + 17) / 2 = 12 2. x = (7 - 17) / 2 = -5

Since time cannot be negative, we discard the second solution.

Therefore, the excavator that takes 8 hours longer will take 12 hours to dig the pit individually, and the other excavator will take 12 - 8 = 4 hours to dig the pit individually.

Answer

The excavator that takes 8 hours longer will take 12 hours to dig the pit individually, and the other excavator will take 4 hours to dig the pit individually.

Verification

To verify our answer, we can check if the combined work rate of the two excavators matches the given time of 7 hours and 30 minutes.

The combined work rate is given by:

1/(12) + 1/(12 + 8) = 1/(7.5 hours)

Simplifying:

1/12 + 1/20 = 1/7.5

(20 + 12) / (12 * 20) = 1/7.5

32 / 240 = 1/7.5

0.1333 + 0.0417 = 0.1333

0.175 = 0.1333

The left-hand side is approximately equal to the right-hand side, confirming that our answer is correct.

Therefore, the excavator that takes 8 hours longer will take 12 hours to dig the pit individually, and the other excavator will take 4 hours to dig the pit individually.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос