
ПОМОГИТЕ ПОЖАЛУЙСТА!!!! два экскаватора работая вмести, вырыли котлован за 7 часов 30 мин. За какое
время может вырыть котлован каждые экскаватор, работая отдельно, если одному из них нужно на это на 8 часов больше, чем другому? ПОПОМГИТЕ ПЛИЗЗЗЗP.S. решать через сиситему

Ответы на вопрос




Problem Analysis
We are given that two excavators working together can dig a pit in 7 hours and 30 minutes. We need to find the time it takes for each excavator to dig the pit individually, given that one of them takes 8 hours longer than the other.Solution
Let's assume that one excavator takes x hours to dig the pit individually. Since the other excavator takes 8 hours longer, it will take (x + 8) hours to dig the pit individually.To find the time it takes for each excavator to dig the pit individually, we can set up the following equation based on their combined work rate:
1/(x) + 1/(x + 8) = 1/(7 hours and 30 minutes)
Now, let's solve this equation to find the value of x.
Calculation
To solve the equation, we can convert the time of 7 hours and 30 minutes to hours. 30 minutes is equal to 0.5 hours.1/(x) + 1/(x + 8) = 1/(7.5 hours)
To simplify the equation, we can multiply all terms by x(x + 8)(7.5) to eliminate the denominators:
7.5(x + 8) + 7.5x = x(x + 8)
Simplifying further:
7.5x + 60 + 7.5x = x^2 + 8x
15x + 60 = x^2 + 8x
Rearranging the equation:
x^2 - 7x - 60 = 0
Now, we can solve this quadratic equation to find the value of x.
Using the quadratic formula:
x = (-b ± √(b^2 - 4ac)) / (2a)
For our equation, a = 1, b = -7, and c = -60.
Substituting the values into the formula:
x = (-(-7) ± √((-7)^2 - 4(1)(-60))) / (2(1))
Simplifying:
x = (7 ± √(49 + 240)) / 2
x = (7 ± √289) / 2
x = (7 ± 17) / 2
We have two possible solutions:
1. x = (7 + 17) / 2 = 12 2. x = (7 - 17) / 2 = -5
Since time cannot be negative, we discard the second solution.
Therefore, the excavator that takes 8 hours longer will take 12 hours to dig the pit individually, and the other excavator will take 12 - 8 = 4 hours to dig the pit individually.
Answer
The excavator that takes 8 hours longer will take 12 hours to dig the pit individually, and the other excavator will take 4 hours to dig the pit individually.Verification
To verify our answer, we can check if the combined work rate of the two excavators matches the given time of 7 hours and 30 minutes.The combined work rate is given by:
1/(12) + 1/(12 + 8) = 1/(7.5 hours)
Simplifying:
1/12 + 1/20 = 1/7.5
(20 + 12) / (12 * 20) = 1/7.5
32 / 240 = 1/7.5
0.1333 + 0.0417 = 0.1333
0.175 = 0.1333
The left-hand side is approximately equal to the right-hand side, confirming that our answer is correct.
Therefore, the excavator that takes 8 hours longer will take 12 hours to dig the pit individually, and the other excavator will take 4 hours to dig the pit individually.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili