
Преобразуйте выражение в многочлен стандартного
видаа)(m+n)^2+(m-n)^2b)2(a-1)^2+3(a-2)^2c)5(x-y)^2+(x-2y)^2d)4(m-2n)^2-3(3m+n)^2e)3(2a-b)-5(a-2b)^2f)4(3x+4y)^2-7(2x-3y)^2g)2(p-3q)^2-4(2p-q)^2-(2q-3p)(p+q)h)5(n-5m)^2-6(2n-3m)^2-(3m-n)(7m-n)i)(2p-q)^2-2(2p-q)(p-q)+(p-q)^2

Ответы на вопрос




a) (m + n)^2 + (m - n)^2
To simplify this expression, we can expand the squares and combine like terms.
Expanding the first square: (m + n)^2 = m^2 + 2mn + n^2
Expanding the second square: (m - n)^2 = m^2 - 2mn + n^2
Now, let's combine the terms: (m + n)^2 + (m - n)^2 = (m^2 + 2mn + n^2) + (m^2 - 2mn + n^2)
Combine like terms: = 2m^2 + 2n^2
So, the simplified expression is 2m^2 + 2n^2.
b) 2(a - 1)^2 + 3(a - 2)^2
To simplify this expression, we will expand the squares and combine like terms.
Expanding the first square: (a - 1)^2 = a^2 - 2a + 1
Expanding the second square: (a - 2)^2 = a^2 - 4a + 4
Now, let's combine the terms: 2(a - 1)^2 + 3(a - 2)^2 = 2(a^2 - 2a + 1) + 3(a^2 - 4a + 4)
Distribute the coefficients: = 2a^2 - 4a + 2 + 3a^2 - 12a + 12
Combine like terms: = 5a^2 - 16a + 14
So, the simplified expression is 5a^2 - 16a + 14.
c) 5(x - y)^2 + (x - 2y)^2
To simplify this expression, we will expand the squares and combine like terms.
Expanding the first square: (x - y)^2 = x^2 - 2xy + y^2
Expanding the second square: (x - 2y)^2 = x^2 - 4xy + 4y^2
Now, let's combine the terms: 5(x - y)^2 + (x - 2y)^2 = 5(x^2 - 2xy + y^2) + (x^2 - 4xy + 4y^2)
Distribute the coefficients: = 5x^2 - 10xy + 5y^2 + x^2 - 4xy + 4y^2
Combine like terms: = 6x^2 - 14xy + 9y^2
So, the simplified expression is 6x^2 - 14xy + 9y^2.
d) 4(m - 2n)^2 - 3(3m + n)^2
To simplify this expression, we will expand the squares and combine like terms.
Expanding the first square: (m - 2n)^2 = m^2 - 4mn + 4n^2
Expanding the second square: (3m + n)^2 = 9m^2 + 6mn + n^2
Now, let's combine the terms: 4(m - 2n)^2 - 3(3m + n)^2 = 4(m^2 - 4mn + 4n^2) - 3(9m^2 + 6mn + n^2)
Distribute the coefficients: = 4m^2 - 16mn + 16n^2 - 27m^2 - 18mn - 3n^2
Combine like terms: = -23m^2 - 34mn + 13n^2
So, the simplified expression is -23m^2 - 34mn + 13n^2.
e) 3(2a - b) - 5(a - 2b)^2
To simplify this expression, we will expand the square and distribute the coefficients.
Expanding the square: (a - 2b)^2 = a^2 - 4ab + 4b^2
Now, let's distribute the coefficients: 3(2a - b) - 5(a - 2b)^2 = 3(2a - b) - 5(a^2 - 4ab + 4b^2)
Distribute the first coefficient: = 6a - 3b - 5(a^2 - 4ab + 4b^2)
Distribute the second coefficient: = 6a - 3b - 5a^2 + 20ab - 20b^2
Combine like terms: = -5a^2 + 26ab - 20b^2 + 6a - 3b
So, the simplified expression is -5a^2 + 26ab - 20b^2 + 6a - 3b.
f) 4(3x + 4y)^2 - 7(2x - 3y)^2
To simplify this expression, we will expand the squares and distribute the coefficients.
Expanding the first square: (3x + 4y)^2 = 9x^2 + 24xy + 16y^2
Expanding the second square: (2x - 3y)^2 = 4x^2 - 12xy + 9y^2
Now, let's distribute the coefficients: 4(3x + 4y)^2 - 7(2x - 3y)^2 = 4(9x^2 + 24xy + 16y^2) - 7(4x^2 - 12xy + 9y^2)
Distribute the first coefficient: = 36x^2 + 96xy + 64y^2 - 28x^2 + 84xy - 63y^2
Combine like terms: = 8x^2 + 180xy + 1y^2
So, the simplified expression is 8x^2 + 180xy + 1y^2.
g) 2(p - 3q)^2 - 4(2p - q)^2 - (2q - 3p)(p + q)
To simplify this expression, we will expand the squares and distribute the coefficients.
Expanding the first square: (p - 3q)^2 = p^2 - 6pq + 9q^2
Expanding the second square: (2p - q)^2 = 4p^2 - 4pq + q^2
Now, let's distribute the coefficients: 2(p - 3q)^2 - 4(2p - q)^2 - (2q - 3p)(p + q) = 2(p^2 - 6pq + 9q^2) - 4(4p^2 - 4pq + q^2) - (2q - 3p)(p + q)
Distribute the first coefficient: = 2p^2 - 12pq + 18q^2 - 16p^2 + 16pq - 4q^2 - (2q - 3p)(p + q)
Simplify the expression in the parentheses: = 2p^2 - 12pq + 18q^2 - 16p^2 + 16pq - 4q^2 - (2qp + 2q^2 - 3p^2 - 3pq)
Combine like terms: = -14p^2 - 2q^2 + 12pq - 2qp - 2q^2 + 3p^2 + 3pq
Combine like terms again: = -11p^2 + 13pq - 4q^2
So, the simplified expression is -11p^2 + 13pq - 4q^2.
h) 5(n - 5m)^2 - 6(2n - 3m)^2 - (3m - n)(7m - n)
To simplify this expression, we will expand the squares and distribute the coefficients.
Expanding the first square: (n - 5m)^2 = n^2 - 10nm + 25m^2
Expanding the second square: (2n - 3m)^2 = 4n^2 - 12nm + 9m^2
Now, let's distribute the coefficients: 5(n - 5m)^2 - 6(2n - 3m)^2 - (3m - n)(7m - n) = 5(n^2 - 10nm + 25m^2) - 6(4n^2 - 12nm + 9m^2) - (3m - n)(7m - n)
Distribute the first coefficient: = 5n^2 - 50nm + 125m^2 - 24n^2 + 72nm - 54m^2 - (21m^2 - 7mn - 3mn + n^2)
Combine like terms: = -19n^2 - 25nm + 92m^2 - 21m^2 + 10mn - n^2
Combine like terms again: = -20n^2 + 10mn + 71m^2
So, the simplified expression is -20n^2 + 10mn + 71m^2.
i) (2p - q


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili