 
Log7(6x-18)>log7(2x-2)
 0
        0
         0
        0
    Ответы на вопрос
 
        Ответ x>4
 0
                    0
                     0
                    0
                 
            I can help you with logarithmic inequalities. To solve this problem, you need to apply the following steps:
1. Use the property of logarithms that says $\log_a b > \log_a c$ if and only if $b > c$ for any positive base $a$ and any positive numbers $b$ and $c$. 2. Rewrite the inequality as $6x - 18 > 2x - 2$ by removing the logarithms with base 7. 3. Simplify the inequality by subtracting 2x from both sides and adding 18 to both sides. You get $4x > 16$. 4. Divide both sides by 4 to get the final answer: $x > 4$.
You can check your answer by plugging in some values of $x$ that are greater than 4 and some that are less than 4 into the original inequality. You will see that the inequality is true only when $x > 4$.
If you need more help with logarithms, you can use this online calculator or read this tutorial. I hope this was helpful. Have a nice day!
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			