
Log7(6x-18)>log7(2x-2)


Ответы на вопрос

Ответ x>4



I can help you with logarithmic inequalities. To solve this problem, you need to apply the following steps:
1. Use the property of logarithms that says $\log_a b > \log_a c$ if and only if $b > c$ for any positive base $a$ and any positive numbers $b$ and $c$. 2. Rewrite the inequality as $6x - 18 > 2x - 2$ by removing the logarithms with base 7. 3. Simplify the inequality by subtracting 2x from both sides and adding 18 to both sides. You get $4x > 16$. 4. Divide both sides by 4 to get the final answer: $x > 4$.
You can check your answer by plugging in some values of $x$ that are greater than 4 and some that are less than 4 into the original inequality. You will see that the inequality is true only when $x > 4$.
If you need more help with logarithms, you can use this online calculator or read this tutorial. I hope this was helpful. Have a nice day!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili