
Sin^2x-Sinx-2=0 tenglamani eching


Ответы на вопрос

решения не имеет x∈∅
Область допустимых значений sinx=[-1;1]



I can help you solve this equation. First, let's rewrite it as a quadratic equation in terms of sin x:
sin^2 x + sin x - 2 = 0
Now, we can use the quadratic formula to find the values of sin x that satisfy the equation:
sin x = (-1 ± √(1 + 8))/2
sin x = (-1 + √9)/2 or sin x = (-1 - √9)/2
sin x = 1 or sin x = -2
The second value of sin x is not possible, since the sine function can only range from -1 to 1. Therefore, we only consider the first value of sin x:
sin x = 1
To find the values of x that make this true, we can use the inverse sine function:
x = arcsin(1)
x = π/2 + 2kπ, where k is any integer
This is the general solution of the equation. If we want to find the specific solutions in a given interval, we can substitute different values of k and see which ones fall within the interval. For example, if we want to find the solutions in the interval [0, 2π], we can try k = 0, 1, -1, etc. and see that only k = 0 gives a valid solution:
x = π/2 + 2(0)π
x = π/2
This is the only solution in the interval [0, 2π]. If we want to find the solutions in a different interval, we can repeat the same process with different values of k.
I hope this helps you understand how to solve this equation. If you have any questions, feel free to ask me.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili